21 research outputs found

    Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors

    Get PDF
    Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and crosspresentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferoninduced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activationof pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIVspecific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines

    Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors.

    Get PDF
    Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines

    CD163+ cytokine-producing cDC2 stimulate intratumoral type 1 T cell responses in HPV16-induced oropharyngeal cancer

    No full text
    BACKGROUND: Human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) is a distinct clinical entity with a much better prognosis after (chemo)radiotherapy than HPV-negative OPSCC, especially in patients with a concomitant intratumoral HPV-specific and type-1 cytokine-oriented T cell response. However, knowledge on the type of myeloid cells and their coordination with intratumoral T cells and influence on patient outcome in OPSCC is lacking. METHODS: We analyzed the presence of intratumoral myeloid cells and their relationship to tumor-infiltrating T cells and patient outcome in a well-described cohort of HPV16+ patients with OPSCC using multispectral immunofluorescence, flow cytometry and functional analyses. RESULTS: We show that the tumor microenvironment of HPV16+ OPSCC tumors with such an ongoing HPV16-specific T cell response is highly infiltrated with a newly defined CD163+ cytokine-producing subset of conventional dendritic cell type 2 (cDC2), called DC3. These CD163+ cDC2 predominantly stimulated type 1 T cell polarization and produced high levels of interleukin-12 (IL-12) and IL-18, required for IFNγ and IL-22 production by T cells after cognate antigen stimulation. Tumor-infiltration with these CD163+ cDC2 positively correlated with the infiltration by Tbet+ and tumor-specific T cells, and with prolonged survival. CONCLUSIONS: These data suggest an important role for intratumoral CD163+ cDC2 in stimulating tumor-infiltrating T cells to exert their antitumor effects

    Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses

    No full text
    Therapeutic vaccination with human papillomavirus type 16 synthetic long peptides (HPV16-SLPs) results in T cell-mediated regression of HPV16-induced premalignant lesions but fails to install clinically effective immunity in patients with HPV16-positive cervical cancer. We explored whether HPV16-SLP vaccination can be combined with standard carboplatin and paclitaxel chemotherapy to improve immunity and which time point would be optimal for vaccination. This was studied in the HPV16 E6/E7-positive TC-1 mouse tumor model and in patients with advanced cervical cancer. In mice and patients, the presence of a progressing tumor was associated with abnormal frequencies of circulating myeloid cells. Treatment of TC-1-bearing mice with chemotherapy and therapeutic vaccination resulted in superior survival and was directly related to a chemotherapy-mediated altered composition of the myeloid cell population in the blood and tumor. Chemotherapy had no effect on tumor-specific T cell responses. In advanced cervical cancer patients, carboplatin-paclitaxel also normalized the abnormal numbers of circulating myeloid cells, and this was associated with increased T cell reactivity to recall antigens. The effect was most pronounced starting 2 weeks after the second cycle of chemotherapy, providing an optimal immunological window for vaccination. This was validated with a single dose of HPV16-SLP vaccine given in this time window. The resulting proliferative HPV16-specific T cell responses were unusually strong and were retained after all cycles of chemotherapy. In conclusion, carboplatin-paclitaxel therapy fosters vigorous vaccine-induced T cell responses when vaccination is given after chemotherapy and has reset the tumor-induced abnormal myeloid cell composition to normal value
    corecore