423 research outputs found

    The association between histamine 2 receptor antagonist use and Clostridium difficile infection: a systematic review and meta-analysis.

    Get PDF
    Background Clostridium difficile infection (CDI) is a major health problem. Epidemiological evidence suggests that there is an association between acid suppression therapy and development of CDI. Purpose We sought to systematically review the literature that examined the association between histamine 2 receptor antagonists (H2RAs) and CDI. Data source We searched Medline, Current Contents, Embase, ISI Web of Science and Elsevier Scopus from 1990 to 2012 for all analytical studies that examined the association between H2RAs and CDI. Study selection Two authors independently reviewed the studies for eligibility. Data extraction Data about studies characteristics, adjusted effect estimates and quality were extracted. Data synthesis Thirty-five observations from 33 eligible studies that included 201834 participants were analyzed. Studies were performed in 6 countries and nine of them were multicenter. Most studies did not specify the type or duration of H2RAs therapy. The pooled effect estimate was 1.44, 95% CI (1.22–1.7), I2 = 70.5%. This association was consistent across different subgroups (by study design and country) and there was no evidence of publication bias. The pooled effect estimate for high quality studies was 1.39 (1.15–1.68), I2 = 72.3%. Meta-regression analysis of 10 study-level variables did not identify sources of heterogeneity. In a speculative analysis, the number needed to harm (NNH) with H2RAs at 14 days after hospital admission in patients receiving antibiotics or not was 58, 95% CI (37, 115) and 425, 95% CI (267, 848), respectively. For the general population, the NNH at 1 year was 4549, 95% CI (2860, 9097). Conclusion In this rigorous systematic review and meta-analysis, we observed an association between H2RAs and CDI. The absolute risk of CDI associated with H2RAs is highest in hospitalized patients receiving antibiotics

    Evolutionary Games with Affine Fitness Functions: Applications to Cancer

    Full text link
    We analyze the dynamics of evolutionary games in which fitness is defined as an affine function of the expected payoff and a constant contribution. The resulting inhomogeneous replicator equation has an homogeneous equivalent with modified payoffs. The affine terms also influence the stochastic dynamics of a two-strategy Moran model of a finite population. We then apply the affine fitness function in a model for tumor-normal cell interactions to determine which are the most successful tumor strategies. In order to analyze the dynamics of concurrent strategies within a tumor population, we extend the model to a three-strategy game involving distinct tumor cell types as well as normal cells. In this model, interaction with normal cells, in combination with an increased constant fitness, is the most effective way of establishing a population of tumor cells in normal tissue.Comment: The final publication is available at http://www.springerlink.com, http://dx.doi.org/10.1007/s13235-011-0029-

    The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer

    Get PDF
    The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer

    Genetic studies of hypertrophic cardiomyopathy in Singaporeans identify variants in TNNI3 and TNNT2 that are common in Chinese patients

    Get PDF
    Background - To assess the genetic architecture of hypertrophic cardiomyopathy (HCM) in patients of predominantly Chinese ancestry. Methods - We sequenced HCM disease genes in Singaporean patients (n=224) and Singaporean controls (n=3,634), compared findings with additional populations and Caucasian HCM cohorts (n=6,179) and performed in vitro functional studies. Results - Singaporean HCM patients had significantly fewer confidently interpreted HCM disease variants (Pathogenic (P)/Likely Pathogenic (LP):18%, p<0.0001) but an excess of variants of unknown significance (exVUS: 24%, p<0.0001), as compared to Caucasians (P/LP: 31%, exVUS: 7%). Two missense variants in thin filament encoding genes were commonly seen in Singaporean HCM (TNNI3:p.R79C, disease allele frequency (AF)=0.018; TNNT2:p.R286H, disease AF=0.022) and are enriched in Singaporean HCM when compared with Asian controls (TNNI3:p.R79C, Singaporean controls AF=0.0055, p=0.0057, gnomAD-East Asian (gnomAD-EA) AF=0.0062, p=0.0086; TNNT2:p.R286H, Singaporean controls AF=0.0017, p<0.0001, gnomAD-EA AF=0.0009, p<0.0001). Both these variants have conflicting annotations in ClinVar and are of low penetrance (TNNI3:p.R79C, 0.7%; TNNT2:p.R286H, 2.7%) but are predicted to be deleterious by computational tools. In population controls, TNNI3:p.R79C carriers had significantly thicker left ventricular walls compared to non-carriers while its etiological fraction is limited (0.70, 95% CI: 0.35-0.86) and thus TNNI3:p.R79C is considered a VUS. Mutant TNNT2:p.R286H iPSC-CMs show hypercontractility, increased metabolic requirements and cellular hypertrophy and the etiological fraction (0.93, 95% CI: 0.83-0.97) support the likely pathogenicity of TNNT2:p.R286H. Conclusions - As compared to Caucasians, Chinese HCM patients commonly have low penetrance risk alleles in TNNT2 or TNNI3 but exhibit few clinically actionable HCM variants overall. This highlights the need for greater study of HCM genetics in non-Caucasian populations

    Skeletal Muscle Differentiation Evokes Endogenous XIAP to Restrict the Apoptotic Pathway

    Get PDF
    Myotube apoptosis occurs normally during muscle development and aging but it can lead to destruction of skeletal muscle in neuromuscular diseases. Therefore, understanding how myotube apoptosis is regulated is important for developing novel strategies for treatment of muscle loss. We investigated the regulation of apoptosis in skeletal muscle and report a striking increase in resistance to apoptosis following differentiation. We find mitotic C2C12 cells (myoblast-like cells) are sensitive to cytosolic cytochrome c microinjection. However, differentiated C2C12 cells (myotube-like cells) and primary myotubes are markedly resistant. This resistance is due to endogenous X-linked inhibitor of apoptotic protein (XIAP). Importantly, the selective difference in the ability of XIAP to block myotube but not myoblast apoptosis is not due to a change in XIAP but rather a decrease in Apaf-1 expression. This decrease in Apaf-1 links XIAP to caspase activation and death. Our findings suggest that in order for myotubes to die, they may degrade XIAP, functionally inactivate XIAP or upregulate Apaf-1. Importantly, we identify a role for endogenous Smac in overcoming XIAP to allow myotube death. However, in postmitotic cardiomyocytes, where XIAP also restricts apoptosis, endogenous Smac was not capable of overcoming XIAP to cause death. These results show that as skeletal muscle differentiate, they become resistant to apoptosis because of the ability of XIAP to regulate caspase activation. The increased restriction of apoptosis in myotubes is presumably important to ensure the long term survival of these postmitotic cells as they play a vital role in the physiology of organisms

    Hepatitis C Virus Reveals a Novel Early Control in Acute Immune Response

    Get PDF
    Recognition of viral RNA structures by the intracytosolic RNA helicase RIG-I triggers induction of innate immunity. Efficient induction requires RIG-I ubiquitination by the E3 ligase TRIM25, its interaction with the mitochondria-bound MAVS protein, recruitment of TRAF3, IRF3- and NF-κB-kinases and transcription of Interferon (IFN). In addition, IRF3 alone induces some of the Interferon-Stimulated Genes (ISGs), referred to as early ISGs. Infection of hepatocytes with Hepatitis C virus (HCV) results in poor production of IFN despite recognition of the viral RNA by RIG-I but can lead to induction of early ISGs. HCV was shown to inhibit IFN production by cleaving MAVS through its NS3/4A protease and by controlling cellular translation through activation of PKR, an eIF2α-kinase containing dsRNA-binding domains (DRBD). Here, we have identified a third mode of control of IFN induction by HCV. Using HCVcc and the Huh7.25.CD81 cells, we found that HCV controls RIG-I ubiquitination through the di-ubiquitine-like protein ISG15, one of the early ISGs. A transcriptome analysis performed on Huh7.25.CD81 cells silenced or not for PKR and infected with JFH1 revealed that HCV infection leads to induction of 49 PKR-dependent genes, including ISG15 and several early ISGs. Silencing experiments revealed that this novel PKR-dependent pathway involves MAVS, TRAF3 and IRF3 but not RIG-I, and that it does not induce IFN. Use of PKR inhibitors showed that this pathway requires the DRBD but not the kinase activity of PKR. We then demonstrated that PKR interacts with HCV RNA and MAVS prior to RIG-I. In conclusion, HCV recruits PKR early in infection as a sensor to trigger induction of several IRF3-dependent genes. Among those, ISG15 acts to negatively control the RIG-I/MAVS pathway, at the level of RIG-I ubiquitination.These data give novel insights in the machinery involved in the early events of innate immune response

    The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature

    Get PDF
    Cutaneous squamous cell carcinoma (cSCC) has a high tumour mutational burden (50 mutations per megabase DNA pair). Here, we combine whole-exome analyses from 40 primary cSCC tumours, comprising 20 well-differentiated and 20 moderately/poorly differentiated tumours, with accompanying clinical data from a longitudinal study of immunosuppressed and immunocompetent patients and integrate this analysis with independent gene expression studies. We identify commonly mutated genes, copy number changes and altered pathways and processes. Comparisons with tumour differentiation status suggest events which may drive disease progression. Mutational signature analysis reveals the presence of a novel signature (signature 32), whose incidence correlates with chronic exposure to the immunosuppressive drug azathioprine. Characterisation of a panel of 15 cSCC tumour-derived cell lines reveals that they accurately reflect the mutational signatures and genomic alterations of primary tumours and provide a valuable resource for the validation of tumour drivers and therapeutic targets

    Subclonal diversification of primary breast cancer revealed by multiregion sequencing.

    Get PDF
    The sequencing of cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and late in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer
    • …
    corecore