1,422 research outputs found

    Membrane separation technology in the 1980s

    Get PDF
    The current status of membrane technology is assessed and industrial processes in which membrane technology could effect energy savings or other advantages are identified. The extension of current trends is recommended; i.e., the development of ultrathin and highly permselective membranes, the use of specific carriers to enhance permselectivity and permit 'uphill' diffusion, and the improvement of separation efficiency. Membranes are predicted to be important in biotechnology and in the production of solar energy. Guidelines indicating where and how to look for opportunities where evolving membrane technology might fit are provided

    The In Vitro Permeability Of Skin And Buccal Mucosa To Selected Drugs And Tritiated Water

    Get PDF
    The permeability of whole human skin, human dermis, whole pig skin, and canine buccal mucosa have been determined for four chemically different solutes: tritiated water, amphetamine, estradiol, and ouabain. Several new in vitro techniques for isolation, preservation, and permeability determination of these membranous tissues are described. Water permeabilities of human epidermis and dermis using these techniques agree well with published results. Human and porcine skins are very similar with respect to water permeability, while buccal mucosa is similar to dermis in its permeability characteristics to the four representative test agents. The permeability of hydrated whole skin is determined by the permeability of the epidermis, and the dermis and buccal mucosa behave as if they are water barriers exhibiting a permeability of about 30% of the diffusion through pure water, a difference that can be ascribed to the porosity and/or tortuosity of the tissue matrix

    Infrared-Faint Radio Sources: A New Population of High-redshift Radio Galaxies

    Full text link
    We present a sample of 1317 Infrared-Faint Radio Sources (IFRSs) that, for the first time, are reliably detected in the infrared, generated by cross-correlating the Wide-Field Infrared Survey Explorer (WISE) all-sky survey with major radio surveys. Our IFRSs are brighter in both radio and infrared than the first generation IFRSs that were undetected in the infrared by the Spitzer Space Telescope. We present the first spectroscopic redshifts of IFRSs, and find that all but one of the IFRSs with spectroscopy has z > 2. We also report the first X-ray counterparts of IFRSs, and present an analysis of radio spectra and polarization, and show that they include Gigahertz-Peaked Spectrum, Compact Steep Spectrum, and Ultra-Steep Spectrum sources. These results, together with their WISE infrared colours and radio morphologies, imply that our sample of IFRSs represents a population of radio-loud Active Galactic Nuclei at z > 2. We conclude that our sample consists of lower-redshift counterparts of the extreme first generation IFRSs, suggesting that the fainter IFRSs are at even higher redshift.Comment: 23 pages, 17 figures. Submitted to MNRA

    Infrared Properties of High Redshift and X-ray Selected AGN Samples

    Full text link
    The NASA/ISO Key Project on active galactic nuclei (AGN) seeks to better understand the broad-band spectral energy distributions (SEDs) of these sources from radio to X-rays, with particular emphasis on infrared properties. The ISO sample includes a wide variety of AGN types and spans a large redshift range. Two subsamples are considered herein: 8 high-redshift (1 < z < 4.7) quasars; and 22 hard X-ray selected sources. The X-ray selected AGN show a wide range of IR continuum shapes, extending to cooler colors than the optical/radio sample of Elvis et al. (1994). Where a far-IR turnover is clearly observed, the slopes are < 2.5 in all but one case so that non-thermal emission remains a possibility. The highest redshift quasars show extremely strong, hot IR continua requiring ~ 100 solar masses of 500 - 1000 Kelvin dust with ~ 100 times weaker optical emission. Possible explanations for these unusual properties include: reflection of the optical light from material above/below a torus; strong obscuration of the optical continuum; or an intrinsic deficit of optical emission.Comment: 8 pages, 3 figures (2 color), to be published in the Springer Lecture Notes of Physics Series as part of the proceedings for "ISO Surveys of a Dusty Universe," a workshop held at Ringberg Castle, Germany, November 8 - 12, 1999. Requires latex style files for this series: cl2emult.cls, cropmark.sty, lnp.sty, sprmindx.sty, subeqnar.sty (included with submission

    Spectroscopic Confirmation of Two Massive Red-Sequence-Selected Galaxy Clusters at z ~ 1.2 in the SpARCS-North Cluster Survey

    Get PDF
    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a deep z'-band imaging survey covering the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) Legacy fields designed to create the first large homogeneously selected sample of massive clusters at z > 1 using an infrared adaptation of the cluster red-sequence method. We present an overview of the northern component of the survey which has been observed with Canada-France-Hawaii Telescope (CFHT)/MegaCam and covers 28.3 deg^2. The southern component of the survey was observed with Cerro Tololo Inter-American Observatory (CTIO)/MOSAICII, covers 13.6 deg^2, and is summarized in a companion paper by Wilson et al. We also present spectroscopic confirmation of two rich cluster candidates at z ~ 1.2. Based on Nod-and-Shuffle spectroscopy from GMOS-N on Gemini, there are 17 and 28 confirmed cluster members in SpARCS J163435+402151 and SpARCS J163852+403843 which have spectroscopic redshifts of 1.1798 and 1.1963, respectively. The clusters have velocity dispersions of 490 ± 140 km s^(–1) and 650 ± 160 km s^(–1), respectively, which imply masses (M_(200)) of (1.0 ± 0.9) × 10^(14) M_⊙ and (2.4 ± 1.8) × 10^(14) M_⊙. Confirmation of these candidates as bonafide massive clusters demonstrates that two-filter imaging is an effective, yet observationally efficient, method for selecting clusters at z > 1

    Spectroscopic Confirmation of a Massive Red-Sequence-Selected Galaxy Cluster at z = 1.34 in the SpARCS-South Cluster Survey

    Get PDF
    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey, consisting of deep (z' ~ 24 AB) observations made from both hemispheres using the CFHT 3.6m and CTIO 4m telescopes. The survey was designed with the primary aim of detecting galaxy clusters at z >~ 1. In tandem with pre-existing 3.6um observations from the Spitzer Space Telescope SWIRE Legacy Survey, SpARCS detects clusters using an infrared adaptation of the two-filter red-sequence cluster technique. The total effective area of the SpARCS cluster survey is 41.9 deg^2. In this paper, we provide an overview of the 13.6 deg^2 Southern CTIO/MOSAICII observations. The 28.3 deg^2 Northern CFHT/MegaCam observations are summarized in a companion paper by Muzzin et al. (2008). In this paper, we also report spectroscopic confirmation of SpARCS J003550-431224, a very rich galaxy cluster at z = 1.335, discovered in the ELAIS-S1 field. To date, this is the highest spectroscopically confirmed redshift for a galaxy cluster discovered using the red-sequence technique. Based on nine confirmed members, SpARCS J003550-431224 has a preliminary velocity dispersion of 1050 +/- 230 km/s. With its proven capability for efficient cluster detection, SpARCS is a demonstration that we have entered an era of large, homogeneously-selected z > 1 cluster surveys.Comment: 10 pages, 6 Figures, Submitted to the Ap

    Enabling a High Throughput Real Time Data Pipeline for a Large Radio Telescope Array with GPUs

    Get PDF
    The Murchison Widefield Array (MWA) is a next-generation radio telescope currently under construction in the remote Western Australia Outback. Raw data will be generated continuously at 5GiB/s, grouped into 8s cadences. This high throughput motivates the development of on-site, real time processing and reduction in preference to archiving, transport and off-line processing. Each batch of 8s data must be completely reduced before the next batch arrives. Maintaining real time operation will require a sustained performance of around 2.5TFLOP/s (including convolutions, FFTs, interpolations and matrix multiplications). We describe a scalable heterogeneous computing pipeline implementation, exploiting both the high computing density and FLOP-per-Watt ratio of modern GPUs. The architecture is highly parallel within and across nodes, with all major processing elements performed by GPUs. Necessary scatter-gather operations along the pipeline are loosely synchronized between the nodes hosting the GPUs. The MWA will be a frontier scientific instrument and a pathfinder for planned peta- and exascale facilities.Comment: Version accepted by Comp. Phys. Com

    Challenges in context-aware mobile language learning: the MASELTOV approach

    Get PDF
    Smartphones, as highly portable networked computing devices with embedded sensors including GPS receivers, are ideal platforms to support context-aware language learning. They can enable learning when the user is en-gaged in everyday activities while out and about, complementing formal language classes. A significant challenge, however, has been the practical implementation of services that can accurately identify and make use of context, particularly location, to offer meaningful language learning recommendations to users. In this paper we review a range of approaches to identifying context to support mobile language learning. We consider how dynamically changing aspects of context may influence the quality of recommendations presented to a user. We introduce the MASELTOV project’s use of context awareness combined with a rules-based recommendation engine to present suitable learning content to recent immigrants in urban areas; a group that may benefit from contextual support and can use the city as a learning environment

    Far-Infrared Properties of Spitzer-selected Luminous Starbursts

    Get PDF
    We present SHARC-2 350 micron data on 20 luminous z ~ 2 starbursts with S(1.2mm) > 2 mJy from the Spitzer-selected samples of Lonsdale et al. and Fiolet et al. All the sources were detected, with S(350um) > 25 mJy for 18 of them. With the data, we determine precise dust temperatures and luminosities for these galaxies using both single-temperature fits and models with power-law mass--temperature distributions. We derive appropriate formulae to use when optical depths are non-negligible. Our models provide an excellent fit to the 6um--2mm measurements of local starbursts. We find characteristic single-component temperatures T1 ~ 35.5+-2.2 K and integrated infrared (IR) luminosities around 10^(12.9+-0.1) Lsun for the SWIRE-selected sources. Molecular gas masses are estimated at 4 x 10^(10) Msun, assuming kappa(850um)=0.15 m^2/kg and a submillimeter-selected galaxy (SMG)-like gas-to-dust mass ratio. The best-fit models imply >~2 kpc emission scales. We also note a tight correlation between rest-frame 1.4 GHz radio and IR luminosities confirming star formation as the predominant power source. The far-IR properties of our sample are indistinguishable from the purely submillimeter-selected populations from current surveys. We therefore conclude that our original selection criteria, based on mid-IR colors and 24 um flux densities, provides an effective means for the study of SMGs at z ~ 1.5--2.5.Comment: 13 pages, 4 figures, edited to match published version in ApJ 717, 29-39 (2010
    corecore