7 research outputs found

    A High-Sensitivity Flexible Direct X-ray Detector Based on Bi2O3/PDMS Nanocomposite Thin Film

    No full text
    The characteristics of mechanical flexibility, low health risk, and simple processing of polymer nanocomposite materials make them potentially applicable as flexible X-ray detectors. In this study, we report on a high sensitivity, environmentally friendly, and flexible direct X-ray detector using polymer nanocomposite material consisting of bismuth oxide (Bi2O3) nanoparticles and polydimethylsiloxane (PDMS). This detector was realized by printing patterned Ag electrodes on the polymer nanocomposite material. The response of PDMS to X-rays was verified for the first time, and the effect of doping different contents of Bi2O3 nanoparticles on the performance of the device was tested. The optoelectronic performance of the optimized detector indicated a high sensitivity (203.58 ÎŒC Gyair−1 cm−2) to low dose rate (23.90 ÎŒGyair s−1) at a 150 V bias voltage and the X-ray current density (JX-ray) was 10,000-fold higher than the dark current density (Jdark). The flexible direct X-ray detector could be curled for 10,000 cycles with slight performance degradation. The device exhibited outstanding stability after storage for over one month in air. Finally, this device provides new guidance for the design of high-performance flexible direct X-ray detectors

    Effects of Seed Size and Sand Burial on Germination and Early Growth of Seedlings for Coastal <i>Pinus thunbergii</i> Parl. in the Northern Shandong Peninsula, China

    No full text
    This paper examines the effects of seed size and the depth of sand burial on seed germination and seedling development for Pinus thunbergii. Parl. Seeds from 20- to 30-year old trees grown in the coastal area of Yantai were divided into three size categories (large, medium, and small). The seeds were sown in pots with different depth of sand, and their germination and seedling growth during the first month were investigated. Results showed that large seeds possessed the highest 1000-seed weight and soluble sugar concentration. Large and medium seeds had a higher germination rate, germination index, vigor index, and seedling biomass than small seeds. With the increase in seed size, root mass ratio, root/shoot ratio, specific root length, and specific root area decreased, whereas leaf mass ratio increased. Sand burial depth significantly influenced seed germination and seedling growth, and the highest germination rate and seedling biomass were achieved with 2&#8211;3 cm sand burial. We also found that seedling biomass was positively related to germination rate, germination index, and vigor index, but was negatively related to mean germination time. Moreover, seedling biomass was negatively correlated with root mass ratio and root/shoot ratio, but positively correlated with leaf mass ratio, specific root length, and specific root area. The results suggest that seed size and sand burial depth are key factors in the regeneration of the coastal P. thunbergii forest

    Effects of Groundwater Mineralization and Groundwater Depth on Eco-Physiological Characteristics of Robinia pseudoacacia L. in the Yellow River Delta, China

    No full text
    Groundwater plays a significant role in influencing the growth and distribution of Robinia pseudoacacia L. plantations, with the largest planting area in the Yellow River Delta, by affecting the soil water&ndash;salt environment. This study aimed to clarify the mechanism of groundwater&rsquo;s influence on the growth of R. pseudoacacia under different levels of groundwater mineralization (GWM) and groundwater depth (GWD). We simulated GWM of 0, 2 and 4 g L&minus;1, and GWD of 0.8, 1.3 and 1.8 m. As GWM increased, soil relative water content (SRWC) and soil salt (dissolved salt) content (SSC) increased; sapling biomass (SB), stem mass (SM), leaf mass (LM), photosynthesis characteristics (maximum net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), transpiration rate (E) and water use efficiency (WUE)) decreased; root mass (RM), root mass ratio (RMR) and root&ndash;shoot ratio (RSR) first increased then decreased; stem mass ratio (SMR) first decreased then increased; and leaf mass ratio (LMR) increased. As GWD increased, SRWC decreased, but SSC first increased then decreased; SB, RM, RMR, RSR, and photosynthesis characteristics increased; SM and LM first increased then decreased; and SMR and LMR decreased. SRWC and SSC were negatively correlated with SB and photosynthesis characteristics. SRWC was negatively correlated with RMR and RSR, whereas it was positively correlated with LMR. SSC was negatively correlated with SMR, whereas it was positively correlated with LMR. The first principal component, including SB, RM, and photosynthesis characteristics, was related to sapling growth. The second principal component, including RMR, SMR, and RSR, was mainly related to biomass allocation. In conclusion, GWM and GWD affected the soil water and salt content, which were key factors influencing the photosynthesis and growth of R. pseudoacacia. Adjustments in biomass allocation and photosynthesis were the main adaptive strategies of R. pseudoacacia to salt, drought, and flooding stress

    Effects of Precipitation and Soil Moisture on the Characteristics of the Seedling Bank under <i>Quercus acutissima</i> Forest Plantation in Mount Tai, China

    No full text
    Natural regeneration is crucial for the development of sustainable forestry practices in light of the current global climate changes. In this paper, we compared the size distributions of Quercus acutissima seedlings in the understory of Q. acutissima forest plantations in Mount Tai in 2010 and 2017, studied the physiological and morphological responses of seedlings to the microenvironment, and explored the maintenance mechanisms of the seedling bank. The results showed that the density of understory seedlings in 2017 was only 61.63% of that in 2010, especially in the 20–40 cm height class. Between 2011 and 2016, the precipitation and soil water content were the highest in 2011, followed by 2013. The 2–4-year seedlings (height 40 cm) showed the largest biomass. Principal component analysis indicated that altering root morphology, nonstructural carbohydrate, and biomass allocation played significant roles in the drought adaptation of seedlings in the understory. In conclusion, drought stress together with seedling adaptation influenced the dynamics of seedling bank in the understory of Q. acutissima plantations
    corecore