2,833 research outputs found

    Investigations of Temperature and Backscatter Correlation in the Dry Snow Zone of the Greenland Ice Sheet

    Get PDF
    Due to system degradation, satellite-borne scatterometers require post-launch calibrations to maintain accuracy. The dry snow zone of the Greenland ice sheet has been used for calibration due to its relatively constant backscatter properties. However, we recently discovered that some of the variation in the dry snow zone backscatter is seasonal. This paper uses correlation analysis to investigate the relationship between temperature and backscatter in the dry snow zone. The correlation coefficient is found to be significant, especially after spatially averaging the backscatter. However, an analysis and simulation demonstrate that spatial averaging can artificially increase the correlation coefficient

    Role-Playing: A Smorgasbord of Learning Types

    Get PDF
    One tertiary institution sought to research the perceptions that tertiary students have of role-plays as a means of learning. Role-plays were used across a range of disciplines at that institution including: teacher training, business and chemistry. Each of these disciplines used a role-play in their classes and then collected opinions from the students on the usefulness of the activity. It was discovered that students value role-plays as a means to challenge preconceived ideas, encourage creative thinking, assist students in applying theory to practice, make lessons fun and provide active learning experiences that increase student learning and engagement

    Abundance and Distribution of Transposable Elements in Two Drosophila QTL Mapping Resources

    Get PDF
    Here we present computational machinery to efficiently and accurately identify transposable element (TE) insertions in 146 next-generation sequenced inbred strains of Drosophila melanogaster. The panel of lines we use in our study is composed of strains from a pair of genetic mapping resources: the Drosophila Genetic Reference Panel (DGRP) and the Drosophila Synthetic Population Resource (DSPR). We identified 23,087 TE insertions in these lines, of which 83.3% are found in only one line. There are marked differences in the distribution of elements over the genome, with TEs found at higher densities on the X chromosome, and in regions of low recombination. We also identified many more TEs per base pair of intronic sequence and fewer TEs per base pair of exonic sequence than expected if TEs are located at random locations in the euchromatic genome. There was substantial variation in TE load across genes. For example, the paralogs derailed and derailed-2 show a significant difference in the number of TE insertions, potentially reflecting differences in the selection acting on these loci. When considering TE families, we find a very weak effect of gene family size on TE insertions per gene, indicating that as gene family size increases the number of TE insertions in a given gene within that family also increases. TEs are known to be associated with certain phenotypes, and our data will allow investigators using the DGRP and DSPR to assess the functional role of TE insertions in complex trait variation more generally. Notably, because most TEs are very rare and often private to a single line, causative TEs resulting in phenotypic differences among individuals may typically fail to replicate across mapping panels since individual elements are unlikely to segregate in both panels. Our data suggest that ā€œburden testsā€ that test for the effect of TEs as a class may be more fruitful

    A Variational Finite Element Method for Source Inversion for Convective-Diffusive Transport

    Get PDF
    We consider the inverse problem of determining an arbitrary source in a time-dependent convective-diffusive transport equation, given a velocity field and pointwise measurements of the concentration. Applications that give rise to such problems include determination of groundwater or airborne pollutant sources from measurements of concentrations, and identification of sources of chemical or biological attacks. To address ill-posedness of the problem, we employ Tikhonov and total variation regularization. We present a variational formulation of the first order optimality system, which includes the initial-boundary value state problem, the final-boundary value adjoint problem, and the space-time boundary value source problem. We discretize in the space-time volume using Galerkin finite elements. Several examples demonstrate the influence of the density of the sensor array, the effectiveness of total variation regularization for discontinuous sources, the invertibility of the source as the transport becomes increasingly convection-dominated, the ability of the space-time inversion formulation to track moving sources, and the optimal convergence rate of the finite element approximation

    Turbine Powered Simulator Calibration and Testing for Hybrid Wing Body Powered Airframe Integration

    Get PDF
    Propulsion airframe integration testing on a 5.75% scale hybrid wing body model us- ing turbine powered simulators was completed at the National Full-Scale Aerodynamics Complex 40- by 80-foot test section. Four rear control surface con gurations including a no control surface de ection con guration were tested with the turbine powered simulator units to investigate how the jet exhaust in uenced the control surface performance as re- lated to the resultant forces and moments on the model. Compared to ow-through nacelle testing on the same hybrid wing body model, the control surface e ectiveness was found to increase with the turbine powered simulator units operating. This was true for pitching moment, lift, and drag although pitching moment was the parameter of greatest interest for this project. With the turbine powered simulator units operating, the model pitching moment was seen to increase when compared to the ow-through nacelle con guration indicating that the center elevon and vertical tail control authority increased with the jet exhaust from the turbine powered simulator units

    How a turn to critical race theory can contribute to our understanding of 'race', racism and anti-racism in sport

    Get PDF
    As long as racism has been associated with sport there have been consistent, if not coordinated or coherent, struggles to confront its various forms. Critical race theory (CRT) is a framework established to challenge these racialized inequalities and racism in society and has some utility for anti-racism in sport. CRT's focus on social justice and transformation are two areas of convergence between critical race theorists and anti-racists. Of the many nuanced and pernicious forms of racism, one of the most obvious and commonly reported forms of racism in sport, racial abuse, has been described as a kind of dehumanizing process by Gardiner (2003), as those who are its target are simultaneously (re)constructed and objectified according to everyday myth and fantasy. However, this is one of the many forms of everyday racist experiences. Various forms of racism can be experienced in boardrooms, on television, in print, in the stands, on the sidelines and on the pitch. Many times racism is trivialized and put down as part of the game (Long et al., 2000), yet its impact is rarely the source of further exploration. This article will explore the conceptualization of 'race' and racism for a more effective anti-racism. Critical race theory will also be used to explore the ideas that underpin considerations of the severity of racist behaviour and the implications for anti-racism. Ā© The Author(s) 2010

    Photometry of Variable Stars from Dome A, Antarctica

    Get PDF
    Dome A on the Antarctic plateau is likely one of the best observing sites on Earth thanks to the excellent atmospheric conditions present at the site during the long polar winter night. We present high-cadence time-series aperture photometry of 10,000 stars with i<14.5 mag located in a 23 square-degree region centered on the south celestial pole. The photometry was obtained with one of the CSTAR telescopes during 128 days of the 2008 Antarctic winter. We used this photometric data set to derive site statistics for Dome A and to search for variable stars. Thanks to the nearly-uninterrupted synoptic coverage, we find 6 times as many variables as previous surveys with similar magnitude limits. We detected 157 variable stars, of which 55% are unclassified, 27% are likely binaries and 17% are likely pulsating stars. The latter category includes delta Scuti, gamma Doradus and RR Lyrae variables. One variable may be a transiting exoplanet.Comment: Accepted for publication in the Astronomical Journal. PDF version with high-resolution figures available at http://faculty.physics.tamu.edu/lmacri/papers/wang11.pd
    • ā€¦
    corecore