19 research outputs found

    Index of Consciousness Monitoring During General Anesthesia May Effectively Enhance Rehabilitation in Elderly Patients Undergoing Laparoscopic Urological Surgery: A Randomized Controlled Clinical Trial

    Get PDF
    Background: Based on electroencephalogram (EEG) analysis, index of consciousness (IoC) monitoring is a new technique for monitoring anesthesia depth. IoC is divided into IoC1 (depth of sedation) and IoC2 (depth of analgesia). The potential for concurrent monitoring of IoC1 and IoC2 to expedite postoperative convalescence remains to be elucidated. We investigated whether combined monitoring of IoC1 and IoC2 can effectively enhances postoperative recovery compared with bispectral index (BIS) in elderly patients undergoing laparoscopic urological surgery under general anesthesia. Methods: In this prospective, controlled, double-blinded trail, 120 patients aged 65 years or older were arbitrarily assigned to either the IoC group or the control group (BIS monitoring). All patients underwent blood gas analysis at T1 (before anesthesia induction) and T2 (the end of operation). The Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) were administered to all patients at T0 (1 day before surgery) and T4 (7 days after surgery). Serum concentrations of C-reactive protein (CRP) and glial fibrillary acid protein (GFAP) were assessed at T1, T2, and T3 (24 h after surgery). Postoperative complications and the duration of hospitalization were subjected to comparative evaluation. Results: The incidence of postoperative cognitive dysfunction (POCD) was notably lower in the IoC group (10%) than in the control group (31.7%) (P = 0.003). Postoperative serum CRP and GFAP concentrations exhibited significant differences at time points T2 (CRP: P = 0.000; GFAP: P = 0.000) and T3 (CRP: P = 0.003; GFAP: P = 0.008). Postoperative blood glucose levels (P = 0.000) and the overall rate of complications (P = 0.037) were significantly lower in Group IoC than in Group control. Conclusion: The employment of IoC monitoring for the management of elderly surgical patients can accelerate postoperative convalescence by mitigating intraoperative stress and reducing peripheral and central inflammatory injury

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    The Global Behavior of a Periodic Epidemic Model with Travel between Patches

    Get PDF
    We establish an SIS (susceptible-infected-susceptible) epidemic model, in which the travel between patches and the periodic transmission rate are considered. As an example, the global behavior of the model with two patches is investigated. We present the expression of basic reproduction ratio R0 and two theorems on the global behavior: if R0 1, then it is unstable; if R0 > 1, the disease is uniform persistence. Finally, two numerical examples are given to clarify the theoretical results

    Biochar Application Improved Sludge-Amended Landscape Soil Fertility Index but with No Added Benefit in Plant Growth

    No full text
    Co-application of sewage sludge (SS) with biochar in landscape/forestry soil is a common strategy for enhancing soil fertility and reducing the bioavailability of potential toxic elements (PTEs) derived from SS, such as Cd, Pb, Cu, Zn, and Ni. However, due to variability of biochar quality and uncertainties in responses of different plant species, whether the co-application benefits the landscape/forestry plant system remains elusive. Here, we tested the effectiveness of three types of biochar (SS-derived biochar (SB), rice straw-derived biochar (RB), and litter-derived biochar (LB)), which were added to soil amended with SS at 50% (w/w) at rates of 1.5%, 3%, and 4.5% as growth media for the landscape plant Aglaonema modestum (A. modestum). We analyzed the substrate’s physicochemical properties and assessed the alleviation of phytotoxicity by biochar application. A significant increase in the fertility index of substrate was observed in all the treatments with biochar addition. The addition of biochar reduced the potential mobility of PTEs while increasing their residual fraction in media. Nonetheless, it has been found that the addition of biochar has ineffective or even negative effects on A. modestum growth (height, biomass, root length) and nutrient absorption. Importantly, the reduction in root biomass and the increased activity of root antioxidant enzymes (SOD, POD, CAT, and MDA) indicate contamination stress of biochar on the roots of A. modestum. Toxic elements of concern—namely Cu, Cd, and Pb—were not significantly higher in tissues of A. modestum saplings planted in biochar-SS-amended soil. However, elevated levels of other elements that may pose toxicity concerns, such as Ni and Zn, increased in tissues at high biochar dosages. Based on the Entropy–Weight TOPSIS method, it was further confirmed that compared to the treatment without biochar, all treatments except for 3.0% LB application resulted in poorer A. modestum comprehensive growth. Our results emphasize the need for detailed research on the response of specific plants to biochar in specific environments, including plant adaptability and the unexplored toxicity of biochar, to understand the large variations and mechanisms behind these ineffective or negative effects before the large-scale co-utilization of SS and biochar in landscape/forestry soils

    Silver Nanoparticle-Functionalised Nitrogen-Doped Carbon Quantum Dots for the Highly Efficient Determination of Uric Acid

    No full text
    The fabrication of efficient fluorescent probes that possess an excellent sensitivity and selectivity for uric acid is highly desirable and challenging. In this study, composites of silver nanoparticles (AgNPs) wrapped with nitrogen-doped carbon quantum dots (N-CQDs) were synthesised utilising N-CQDs as the reducing and stabilising agents in a single reaction with AgNO3. The morphology and structure, absorption properties, functional groups, and fluorescence properties were characterised by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet spectroscopy, fluorescence spectroscopy, and X-ray diffraction spectroscopy. In addition, we developed a novel method based on AgNPs/N-CQDs for the detection of uric acid using the enzymatic reaction of uric acid oxidase. The fluorescence enhancement of the AgNPs/N-CQDs composite was linear (R2 = 0.9971) in the range of 2.0–60 μmol/L, and gave a detection limit of 0.53 μmol/L. Trace uric acid was successfully determined in real serum samples from the serum of 10 healthy candidates and 10 gout patients, and the results were consistent with those recorded by Qianxinan Prefecture People’s Hospital. These results indicate that the developed AgNP/N-CQD system can provide a universal platform for detecting the multispecies ratio fluorescence of H2O2 generation in other biological systems

    Preparation of One-Emission Nitrogen-Fluorine-Doped Carbon Quantum Dots and Their Applications in Environmental Water Samples and Living Cells for ClO− Detection and Imaging

    No full text
    Hypochlorite (ClO−) has received extensive attention owing to its significant roles in the immune defense and pathogenesis of numerous diseases. However, excessive or misplaced production of ClO− may pose certain diseases. Thus, to determine its biological functions in depth, ClO− should be tested in biosystems. In this study, a facile, one-pot synthesis of nitrogen-fluorine-doped carbon quantum dots (N, F-CDs) was developed using ammonium citrate tribasic, L-alanine, and ammonium fluoride as raw materials under hydrothermal conditions. The prepared N, F-CDs demonstrate not only strong blue fluorescence emission with a high fluorescence quantum yield (26.3%) but also a small particle size of approximately 2.9 nm, as well as excellent water solubility and biocompatibility. Meanwhile, the as-prepared N, F-CDs exhibit good performance in the highly selective and sensitive detection of ClO−. Thus, a wide concentration response range of 0–600 μM with a low limit of detection (0.75 μM) was favorably obtained for the N, F-CDs. Based on the excellent fluorescence stability, excellent water solubility, and low cell toxicity, the practicality and viability of the fluorescent composites were also successfully verified via detecting ClO− in water samples and living RAW 264.7 cells. The proposed probe is expected to provide a new approach for detecting ClO− in other organelles

    Sliding Mode Observer for State-of-Charge Estimation Using Hysteresis-Based Li-Ion Battery Model

    No full text
    Lithium-ion battery devices are essential for energy storage and supply in distributed energy generation systems. Robust battery management systems (BMSs) must guarantee that batteries work within a safe range and avoid the damage caused by overcharge and overdischarge. The state-of-charge (SoC) of Li-ion batteries is difficult to observe after batteries are manufactured. The hysteresis phenomenon influences the existing battery modeling and SoC estimation accuracy. This research applies a terminal sliding mode observer (TSMO) algorithm based on a hysteresis resistor-capacitor (RC) equivalent circuit model to enable accurate SoC estimation. The proposed method is evaluated using two dynamic battery tests: the dynamic street test (DST) and the federal urban driving schedule (FUDS) test. The simulation results show that the proposed method achieved high estimation accuracy and fast response speed. Additionally, real-time battery information, including battery output voltage and SoC, was acquired and displayed by an automatic monitoring system. The designed system is valuable for all battery application cases

    Multiscale and Hierarchical Wrinkle Enhanced Graphene/Ecoflex Sensors Integrated with Human-Machine Interfaces and Cloud-Platform

    No full text
    Current state-of-the-art stretchable/flexible sensors have received stringent demands on sensitivity, flexibility, linearity, and wide-range measurement capability. Herein, we report a methodology of strain sensors based on graphene/Ecoflex composites by modulating multiscale/hierarchical wrinkles on flexible substrates. The sensor shows an ultra-high sensitivity with a gauge factor of 1078.1, a stretchability of 650, a response time of ~140 ms, and a superior cycling durability . It can detect wide-range physiological signals including vigorous body motions, pulse monitoring and speech recognition, and be used for monitoring of human respirations in realtime using a cloud platform, showing a great potential for healthcare internet of things. Complex gestures/sign languages can be precisely detected. Human-machine interface is demonstrated by using a sensor-integrated glove to remotely control an external manipulator to remotely defuse a bomb. This study provides strategies for real-time/long-range medical diagnosis and remote assistance to perform dangerous tasks in industry and military fields
    corecore