7,561 research outputs found
Electrodynamics of superconductors
An alternate set of equations to describe the electrodynamics of
superconductors at a macroscopic level is proposed. These equations resemble
equations originally proposed by the London brothers but later discarded by
them. Unlike the conventional London equations the alternate equations are
relativistically covariant, and they can be understood as arising from the
'rigidity' of the superfluid wave function in a relativistically covariant
microscopic theory. They predict that an internal 'spontaneous' electric field
exists in superconductors, and that externally applied electric fields, both
longitudinal and transverse, are screened over a London penetration length, as
magnetic fields are. The associated longitudinal dielectric function predicts a
much steeper plasmon dispersion relation than the conventional theory, and a
blue shift of the minimum plasmon frequency for small samples. It is argued
that the conventional London equations lead to difficulties that are removed in
the present theory, and that the proposed equations do not contradict any known
experimental facts. Experimental tests are discussed.Comment: Small changes following referee's and editor's comments; to be
published in Phys.Rev.
Can one detect new physics in I=0 and/or I=2 contributions to the decays B --> pi pi?
We study the effects of new-physics contributions to B --> pi pi decays,
which can be parametrized as four new complex quantities. A simple analysis is
provided by utilizing the reparametrization invariance of the decay amplitudes.
We find that six quantities can be reabsorbed into the definitions of Standard
Model-like parameters. As a result, the usual isospin analysis provides only
two constraints on new physics which are independent of estimates for the
Standard Model contributions. In particular, we show that one is not sensitive
to new physics affecting the I=0 amplitudes. On the other hand, I=2 new physics
can be detected, and its parameters can be measured by using independent
determinations of the weak phases. We obtain constraints on these new-physics
parameters through a fit to the current experimental data.Comment: 8 pages, RevTe
Effects of disorder on the vortex charge
We study the influence of disorder on the vortex charge, both due to random
pinning of the vortices and due to scattering off non-magnetic impurities. In
the case when there are no impurities present, but the vortices are randomly
distributed, the effect is very small, except when two or more vortices are
close by. When impurities are present, they have a noticeable effect on the
vortex charge. This, together with the effect of temperature, changes
appreciably the vortex charge. In the case of an attractive impurity potential
the sign of the charge naturally changes.Comment: 10 pages, 16 figures. Accepted in Phys. Rev.
Measurements of New Physics in B -> pi pi Decays
If new physics (NP) is present in B -> pi pi decays, it can affect the
isospin I=2 or I=0 channels. In this paper, we discuss various methods for
detecting and measuring this NP. The techniques have increasing amounts of
theoretical hadronic input. If NP is eventually detected in B -> pi pi -- there
is no evidence for it at present -- one will be able to distinguish I=2 and
I=0, and measure its parameters, using these methods.Comment: 24 pages, no figures, revte
Spin currents in superconductors
It is argued that experiments on rotating superconductors provide evidence
for the existence of macroscopic spin currents in superconductors in the
absence of applied external fields. Furthermore it is shown that the model of
hole superconductivity predicts the existence of such currents in all
superconductors. In addition it is pointed out that spin currents are required
within a related macroscopic (London-like) electrodynamic description of
superconductors recently proposed. The spin current arises through an intrinsic
spin Hall effect when negative charge is expelled from the interior of the
metal upon the transition to the superconducting state
Predicted electric field near small superconducting ellipsoids
We predict the existence of large electric fields near the surface of
superconducting bodies of ellipsoidal shape of dimensions comparable to the
penetration depth. The electric field is quadrupolar in nature with significant
corrections from higher order multipoles. Prolate (oblate) superconducting
ellipsoids are predicted to exhibit fields consistent with negative (positive)
quadrupole moments, reflecting the fundamental charge asymmetry of matter.Comment: To be published in Phys.Rev.Let
Interatomic Methods for the Dispersion Energy Derived from the Adiabatic Connection Fluctuation-Dissipation Theorem
Interatomic pairwise methods are currently among the most popular and
accurate ways to include dispersion energy in density functional theory (DFT)
calculations. However, when applied to more than two atoms, these methods are
still frequently perceived to be based on \textit{ad hoc} assumptions, rather
than a rigorous derivation from quantum mechanics. Starting from the adiabatic
connection fluctuation-dissipation (ACFD) theorem, an exact expression for the
electronic exchange-correlation energy, we demonstrate that the pairwise
interatomic dispersion energy for an arbitrary collection of isotropic
polarizable dipoles emerges from the second-order expansion of the ACFD
formula. Moreover, for a system of quantum harmonic oscillators coupled through
a dipole--dipole potential, we prove the equivalence between the full
interaction energy obtained from the Hamiltonian diagonalization and the ACFD
correlation energy in the random-phase approximation. This property makes the
Hamiltonian diagonalization an efficient method for the calculation of the
many-body dispersion energy. In addition, we show that the switching function
used to damp the dispersion interaction at short distances arises from a
short-range screened Coulomb potential, whose role is to account for the
spatial spread of the individual atomic dipole moments. By using the ACFD
formula we gain a deeper understanding of the approximations made in the
interatomic pairwise approaches, providing a powerful formalism for further
development of accurate and efficient methods for the calculation of the
dispersion energy
Modeling Solar Lyman Alpha Irradiance
Solar Lyman alpha irradiance is estimated from various solar indices using linear regression analyses. Models developed with multiple linear regression analysis, including daily values and 81-day running means of solar indices, predict reasonably well both the short- and long-term variations observed in Lyman alpha. It is shown that the full disk equivalent width of the He line at 1083 nm offers the best proxy for Lyman alpha, and that the total irradiance corrected for sunspot effect also has a high correlation with Lyman alpha
Fermi gas in harmonic oscillator potentials
Assuming the validity of grand canonical statistics, we study the properties
of a spin-polarized Fermi gas in harmonic traps. Universal forms of Fermi
temperature , internal energy and the specific heat per particle of
the trapped Fermi gas are calculated as a {\it function} of particle number,
and the results compared with those of infinite number particles.Comment: 8 pages, 1 figure, LATE
Dynamic Complementarities, Efficiency and Nash Equilibria for Populations of Firms and Workers
We consider an economy with two types of firms (innovative and non-innovative) and two types of workers (skilled and unskilled), where workers' decisions are driven by imitative behavior, and thus the evolution of such an economy depends on the initial distribution of the firms. We show that there exists a continuous of high level steady states and only one low level and asymptotically stable equilibrium. There exists a threshold value on the initial number of firms to be overcome it to located in the basin of attraction of one of the high level equilibrium. We show that in each high level equilibrium there coexists a share of innovative firms with a share of non-innovative firms, and a share of skilled workers (human capital) coexisting with a share of unskilled workers. But if the initial share of innovative firms is lower than the threshold value, then the economy evolves to a low level equilibrium wholly composed by non-innovative firms and unskilled workers. Finally, we characterise the equilibria as the evolutionarily stable strategies against a field.Imitative Behavior, Poverty Traps, Strategic Complementarities, Two Population Normal Form Game, Threshold Value.
- …