72 research outputs found

    Reshuffling the OPE: Delocalized Operator Expansion

    Get PDF
    A generalization of the operator product expansion for Euclidean correlators of gauge invariant QCD currents is presented. Each contribution to the modified expansion, which is based on a delocalized multipole expansion of a perturbatively determined coefficient function, sums up an infinite series of local operators. On a more formal level the delocalized operator expansion corresponds to an optimal choice of basis sets in the dual spaces which are associated with the interplay of perturbative and nonperturbative N-point correlations in a distorted vacuum. A consequence of the delocalized expansion is the running of condensates with the external momentum. Phenomenological evidence is gathered that the gluon condensate, often being the leading nonperturbative parameter in the OPE, is indeed a function of resolution. Within a model calculation of the nonperturbative corrections to the ground state energy of a heavy quarkonium system it is shown exemplarily that the convergence properties are better than those of the OPE. Potential applications of the delocalized operator expansion in view of estimates of the violation of local quark-hadron duality are discussed.Comment: Talk given at conference Continuous advances in QCD 2002 / Arkadyfest, Minneapolis; 16 pages, 4 figure

    A Rigidifying Salt-Bridge Favors the Activity of Thermophilic Enzyme at High Temperatures at the Expense of Low-Temperature Activity

    Get PDF
    Although enzymes from thermophiles thriving in hot habitats are more stable than their mesophilic homologs, they are often less active at low temperatures. One theory suggests that extra stabilizing interactions found in thermophilic enzymes may increase their rigidity and decrease enzymatic activity at lower temperatures. We used acylphosphatase as a model to study how flexibility affects enzymatic activity. This enzyme has a unique structural feature in that an invariant arginine residue, which takes part in catalysis, is restrained by a salt-bridge in the thermophilic homologs but not in its mesophilic homologs. Here, we demonstrate the trade-offs between flexibility and enzymatic activity by disrupting the salt-bridge in a thermophilic acylphosphatase and introducing it in the mesophilic human homolog. Our results suggest that the salt-bridge is a structural adaptation for thermophilic acylphosphatases as it entropically favors enzymatic activity at high temperatures by restricting the flexibility of the active-site residue. However, at low temperatures the salt-bridge reduces the enzymatic activity because of a steeper temperature-dependency of activity

    Constitutive Overexpression of the OsNAS Gene Family Reveals Single-Gene Strategies for Effective Iron- and Zinc-Biofortification of Rice Endosperm

    Get PDF
    BACKGROUND: Rice is the primary source of food for billions of people in developing countries, yet the commonly consumed polished grain contains insufficient levels of the key micronutrients iron (Fe), zinc (Zn) and Vitamin A to meet daily dietary requirements. Experts estimate that a rice-based diet should contain 14.5 µg g−1 Fe in endosperm, the main constituent of polished grain, but breeding programs have failed to achieve even half of that value. Transgenic efforts to increase the Fe concentration of rice endosperm include expression of ferritin genes, nicotianamine synthase genes (NAS) or ferritin in conjunction with NAS genes, with results ranging from two-fold increases via single-gene approaches to six-fold increases via multi-gene approaches, yet no approach has reported 14.5 µg g−1 Fe in endosperm. METHODOLOGY/PRINCIPAL FINDINGS: Three populations of rice were generated to constitutively overexpress OsNAS1, OsNAS2 or OsNAS3, respectively. Nicotianamine, Fe and Zn concentrations were significantly increased in unpolished grain of all three of the overexpression populations, relative to controls, with the highest concentrations in the OsNAS2 and OsNAS3 overexpression populations. Selected lines from each population had at least 10 µg g−1 Fe in polished grain and two OsNAS2 overexpression lines had 14 and 19 µg g−1 Fe in polished grain, representing up to four-fold increases in Fe concentration. Two-fold increases of Zn concentration were also observed in the OsNAS2 population. Synchrotron X-ray fluorescence spectroscopy demonstrated that OsNAS2 overexpression leads to significant enrichment of Fe and Zn in phosphorus-free regions of rice endosperm. CONCLUSIONS: The OsNAS genes, particularly OsNAS2, show enormous potential for Fe and Zn biofortification of rice endosperm. The results demonstrate that rice cultivars overexpressing single rice OsNAS genes could provide a sustainable and genetically simple solution to Fe and Zn deficiency disorders affecting billions of people throughout the world.Alexander A. T. Johnson, Bianca Kyriacou, Damien L. Callahan, Lorraine Carruthers, James Stangoulis, Enzo Lombi and Mark Teste

    Perturbative QCD Calculations of Total Cross Sections and Decay Widths in Hard Inclusive Processes

    Get PDF
    A summary of the current understanding of methods of analytical higher order perturbative computations of total cross sections and decay widths in Quantum Chromodynamics is presented. As examples, the total cross section in electron positron annihilation, the hadronic decay rates of the tau lepton and Higgs boson up to O(\alpha_s^2) and O(\alpha_s^3) are considered. The evaluation of the four-loop QED \beta - function at an intermediate step of the calculation is briefly described. The problem of renormalization group ambiguity of perturbative results is considered and some of the existing prescriptions are discussed. The problem of estimation of theoretical uncertainty in perturbative calculations is briefly discussed.Comment: 83 pages, LaTeX, Reviews of Modern Physics style, 14 figures plus figural equations (not included). Hard copy available upon request at [email protected]. To be published in Reviews of Modern Physic

    Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter

    Full text link
    Nearly 75 years ago, Alfred C. Redfield observed a similarity between the elemental composition of marine plankton in the surface ocean and dissolved nutrients in the ocean interior. This stoichiometry, referred to as the Redfield ratio, continues to be a central tenet in ocean biogeochemistry, and is used to infer a variety of ecosystem processes, such as phytoplankton productivity and rates of nitrogen fixation and loss2-4. Model, field and laboratory studies have shown that different mechanisms can explain both constant and variable ratios of carbon to nitrogen and phosphorus among ocean plankton communities. The range of C/N/P ratios in the ocean, and their predictability, are the subject of much active research. Here we assess global patterns in the elemental composition of phytoplankton and particulate organic matter in the upper ocean, using published and unpublished observations of particulate phosphorus, nitrogen and carbon from a broad latitudinal range, supplemented with elemental data for surface plankton populations. We show that the elemental ratios of marine organic matter exhibit large spatial variations, with a global average that differs substantially from the canonical Redfield ratio. However, elemental ratios exhibit a clear latitudinal trend. Specifically, we observed a ratio of 195:28:1 in the warm nutrient-depleted low-latitude gyres, 137:18:1 in warm, nutrient-rich upwelling zones, and 78:13:1 in cold, nutrient-rich high-latitude regions. We suggest that the coupling between oceanic carbon, nitrogen and phosphorus cycles may vary systematically by ecosystem. © 2013 Macmillan Publishers Limited. All rights reserved

    Острые отравления диацетилморфином (героином) (обзор)

    Get PDF
    This review presents current data on the mechanism of action, selective toxicity, toxicokinetics and toxicodynamics of diacetylmorphine (heroin). Acute diacetylmorphine poisoning is considered under taking into account the developing a critical state, in which the poisoning severity is determined by severe metabolic disorders associated with the progression of hypoxia. The main lifethreatening complications of acute diacetyl morphine poisoning are described including those associated with the nervous system, respiratory, circulatory and urinary systems. Since hypoxia is the principal damaging factor, the the mechanisms of oxygen transport disorders and the pathogenesis of activation of free radical oxidation in acute diacetylmorphine poisoning are discussed. The improvement of intensive care strategy for severe forms of acute diacetylmorphine poisoning by the inclusion of a substrate antihypoxant Reamberin into the list of routine critical care prescriptions is emphesized.В обзоре представлены современные данные о механизме действия, избирательной токсичности, токсикокинетике и токсикодинамике диацетилморфина (героина). Острые отравления диацетилморфином рассмотрены в аспекте формирования критического состояния, при котором тяжесть отравления обусловлена развитием выраженных метаболических расстройств, связанных с прогрессированием гипоксии. Описаны основные жизнеопасные осложнения, которые возникают вследствие острых отравлений диацетилморфином со стороны ЦНС, системы дыхания, кровообращения, мочевыделительной системы. Учитывая, что основным фактором поражения является гипоксия, рассмотрены механизмы нарушений транспорта кислорода, а также патогенез активации свободнорадикального окисления при острых отравлениях диацетилморфином. Дано обоснование направлений совершенствования интенсивной терапии тяжелых форм острых отравлений диацетилморфином путем использования, помимо общереаниматологических мероприятий, субстратного антигипоксанта реамберина

    Soil resource supply influences faunal size–specific distributions in natural food webs

    Get PDF
    The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass–abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways

    The Terminal End Bud: the Little Engine that Could

    Get PDF
    corecore