2,242 research outputs found

    A Universal Temperature Profile for Galaxy Clusters

    Get PDF
    We investigate the predicted present-day temperature profiles of the hot, X-ray emitting gas in galaxy clusters for two cosmological models - a current best-guess LCDM model and standard cold dark matter (SCDM). Our numerically-simulated "catalogs" of clusters are derived from high-resolution (15/h kpc) simulations which make use of a sophisticated, Eulerian-based, Adaptive Mesh-Refinement (AMR) code that faithfully captures the shocks which are essential for correctly modelling cluster temperatures. We show that the temperature structure on Mpc-scales is highly complex and non-isothermal. However, the temperature profiles of the simulated LCDM and SCDM clusters are remarkably similar and drop-off as T+AFw−propto(1+−r/ax)−+AFw−deltaT +AFw-propto (1+-r/a_x)^{-+AFw-delta} where ax+AFw−simrvir/1.5a_x +AFw-sim r_{vir}/1.5 and +AFw−delta+AFw−sim1.6+AFw-delta +AFw-sim 1.6. This decrease is in good agreement with the observational results of Markevitch et al.(1998) but diverges, primarily in the innermost regions, from their fit which assumes a polytropic equation of state. Our result is also in good agreement with a recent sample of clusters observed by BeppoSAX though there is some indication of missing physics at small radii (r<0.2rvirr<0.2 r_{vir}). We discuss the interpretation of our results and make predictions for new x-ray observations that will extend to larger radii than previously possible. Finally, we show that, for r>0.2rvirr>0.2 r_{vir}, our universal temperature profile is consistent with our most recent simulations which include both radiative cooling and supernovae feedback.Comment: 8 pages, 6 figures, accepted for publication in ApJ, full-page version of Fig. 2 at http://www.cita.utoronto.ca/+AH4-cloken/PAPERS/UTP/f2.ep

    Full density matrix dynamics for large quantum systems: Interactions, Decoherence and Inelastic effects

    Full text link
    We develop analytical tools and numerical methods for time evolving the total density matrix of the finite-size Anderson model. The model is composed of two finite metal grains, each prepared in canonical states of differing chemical potential and connected through a single electronic level (quantum dot or impurity). Coulomb interactions are either excluded all together, or allowed on the dot only. We extend this basic model to emulate decoherring and inelastic scattering processes for the dot electrons with the probe technique. Three methods, originally developed to treat impurity dynamics, are augmented to yield global system dynamics: the quantum Langevin equation method, the well known fermionic trace formula, and an iterative path integral approach. The latter accommodates interactions on the dot in a numerically exact fashion. We apply the developed techniques to two open topics in nonequilibrium many-body physics: (i) We explore the role of many-body electron-electron repulsion effects on the dynamics of the system. Results, obtained using exact path integral simulations, are compared to mean-field quantum Langevin equation predictions. (ii) We analyze aspects of quantum equilibration and thermalization in large quantum systems using the probe technique, mimicking elastic-dephasing effects and inelastic interactions on the dot. Here, unitary simulations based on the fermionic trace formula are accompanied by quantum Langevin equation calculations

    Initial Hubble Diagram Results from the Nearby Supernova Factory

    Full text link
    The use of Type Ia supernovae as distance indicators led to the discovery of the accelerating expansion of the universe a decade ago. Now that large second generation surveys have significantly increased the size and quality of the high-redshift sample, the cosmological constraints are limited by the currently available sample of ~50 cosmologically useful nearby supernovae. The Nearby Supernova Factory addresses this problem by discovering nearby supernovae and observing their spectrophotometric time development. Our data sample includes over 2400 spectra from spectral timeseries of 185 supernovae. This talk presents results from a portion of this sample including a Hubble diagram (relative distance vs. redshift) and a description of some analyses using this rich dataset.Comment: Short version of proceedings for ICHEP08, Philadelphia PA, July 2008; see v1 for full-length versio

    X-ray and Radio Interactions in the Cores of Cooling Flow Clusters

    Get PDF
    We present high resolution ROSAT x-ray and radio observations of three cooling flow clusters containing steep spectrum radio sources at their cores. All three systems exhibit strong signs of interaction between the radio plasma and the hot intracluster medium. Two clusters, A133 and A2626, show enhanced x-ray emission spatially coincident with the radio source whereas the third cluster, A2052, exhibits a large region of x-ray excess surrounding much of the radio source. Using 3-D numerical simulations, we show that a perturbed jet propagating through a cooling flow atmosphere can give rise to amorphous radio morphologies, particularly in the case where the jet was ``turned off'' and allowed to age passively. In addition, the simulated x-ray surface brightness produced both excesses and deficits as seen observationally.Comment: 25 pages, 10 figures, accepted for publication in A

    Atmospheric extinction properties above Mauna Kea from the Nearby Supernova Factory spectro-photometric data set

    Full text link
    We present a new atmospheric extinction curve for Mauna Kea spanning 3200--9700 \AA. It is the most comprehensive to date, being based on some 4285 standard star spectra obtained on 478 nights spread over a period of 7 years obtained by the Nearby SuperNova Factory using the SuperNova Integral Field Spectrograph. This mean curve and its dispersion can be used as an aid in calibrating spectroscopic or imaging data from Mauna Kea, and in estimating the calibration uncertainty associated with the use of a mean extinction curve. Our method for decomposing the extinction curve into physical components, and the ability to determine the chromatic portion of the extinction even on cloudy nights, is described and verified over the wide range of conditions sampled by our large dataset. We demonstrate good agreement with atmospheric science data obtain at nearby Mauna Loa Observatory, and with previously published measurements of the extinction above Mauna Kea.Comment: 22 pages, 24 figures, 6 table

    Host Galaxies of Type Ia Supernovae from the Nearby Supernova Factory

    Full text link
    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory (SNfactory). Combining GALEX UV data with optical and near infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star-formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high precision redshifts, gas-phase metallicities, and Halpha-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from SDSS for stellar masses log(M_*/M_Sun)>8.5 where the relation is well-defined. The star-formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.Comment: 25 pages, 13 figures, accepted for publication in Ap

    Host Galaxy Properties and Hubble Residuals of Type Ia Supernovae from the Nearby Supernova Factory

    Full text link
    We examine the relationship between Type Ia Supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory (SNfactory). We use host galaxy stellar masses and specific star-formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-AGN) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low and high mass hosts is 0.077 +- 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 <= log(M_*/M_Sun) <= 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.Comment: 20 pages, 11 figures, accepted for publication in Ap
    • 

    corecore