12 research outputs found

    Left ventricular assist device implantation augments nitric oxide dependent control of mitochondrial respiration in failing human hearts

    Get PDF
    AbstractOBJECTIVESThe objective of the study was to evaluate nitric oxide (NO) mediated regulation of mitochondrial respiration after implantation of a mechanical assist device in end-stage heart failure.BACKGROUNDVentricular unloading using a left ventricular assist device (LVAD) can improve mitochondrial function in end-stage heart failure. Nitric oxide modulates the activity of the mitochondrial electron transport chain to regulate myocardial oxygen consumption (MVO2).METHODSMyocardial oxygen consumption was measured polarographically using a Clark-type oxygen electrode in isolated left ventricular myocardium from 26 explanted failing human hearts obtained at the time of heart transplantation.RESULTSThe rate of decrease in oxygen concentration was expressed as a percentage of baseline. Results of the highest dose of drug are shown. Decrease in MVO2 was greater in LVAD hearts (n = 8) compared with heart failure controls (n = 18) in response to the following drugs: bradykinin (−34 ± 3% vs. −24 ± 5%), enalaprilat (−37 ± 5% vs. −23 ± 5%) and amlodipine (−43 ± 13% vs. −16 ± 5%; p < 0.05 from controls). The decrease in MVO2 in LVAD hearts was not significantly different from controls in response to diltiazem (−22 ± 5% in both groups) and exogenous NO donor, nitroglycerin (−33 ± 7% vs. −30 ± 3%). Nw-nitro-L-arginine methyl ester, inhibitor of NO synthase, attenuated the response to bradykinin, enalaprilat and amlodipine. Reductions in MVO2 in response to diltiazem and nitroglycerin were not altered by inhibiting NO.CONCLUSIONSChronic LVAD support potentiates endogenous NO-mediated regulation of mitochondrial respiration. Use of medical or surgical interventions that augment NO bioavailability may promote myocardial recovery in end-stage heart failure

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore