8 research outputs found

    Suomen arvokkaat geenivarat

    Get PDF
    Biologista monimuotoisuutta koskeva yleissopimus, eli biodiversiteettisopimus, asettaa tavoitteeksi maapallon ekosysteemien, eläin- ja kasvilajien sekä niiden sisältämien perintötekijöiden monimuotoisuuden suojelun, luonnonvarojen kestävän käytön sekä luonnonvarojen käytöstä saatavien hyötyjen oikeudenmukaisen jaon. Vuonna 2010 solmitun Nagoyan pöytäkirjan tarkoituksena on toteuttaa biodiversiteettisopimuksen tavoite geenivarojen saatavuudesta ja hyötyjen jaosta täsmentämällä biodiversiteettisopimuksen 15 artiklan yleistä geenivarakehystä. Lisäksi pöytakirja kattaa geenivarojen hyödyntämistä koskevat eri vaiheet saatavuudesta hyötyjen jakoon. Tässä raportissa esitellään Suomen Nagoyan pöytäkirjan alaiset arvokkaat geenivarat eliöryhmittäin, tarkastellaan niiden potentiaalista käyttöä, niistä mahdollisesti saatavaa taloudellista hyötyä sekä luonnonsuojelullisia näkökantoja geenivarojen kestävään käyttöön. Raportissa pohditaan myös jokamiehen oikeuksien vaikutusta geenivarojen saantiin. Nagoyan pöytäkirjan soveltamisen kannalta taloudellisesti merkittävin eliöryhmä Suomessa lienevät mikrobit (arkeonit, bakteerit, mikrolevät, sienet, virukset, homeet, hiivat ja alkueläimet). Geenivarojen suojelun kannalta tärkeitä ryhmiä taas ovat sellaiset uhanalaiset eliöt, joita ei ole rauhoitettu tai jotka eivät ole suojeltuja

    Levät ja biotalous biotekniikan näkökulmasta

    Get PDF
    Biotalous tarjoaa vaihtoehdon fossiilisiin polttoaineisiin perustuvalle taloudelle ja sen avulla luonnonvaroja hyödynnetään kestävällä, liiketaloudellisesti kannattavalla tavalla. Biotalous voi osaltaan olla ratkaisu luonnonvarojen ehtymisen ja ilmastonmuutoksen aiheuttamiin globaaleihin haasteisiin. Bioteknologia puolestaan tarjoaa biotaloudelle monia mahdollisuuksia teollisuusprosesseissa, lääketieteessä, elintarvike- ja energiantuotannossa, maa- ja metsätaloudessa sekä ympäristönsuojelussa. Biotalous on käsitteenä laaja ja kehittyy nopeasti. Levät ovat esimerkki nopeasti kasvavasta biomassasta, joka on herättänyt paljon kiinnostusta sen monista sovellusmahdollisuuksista johtuen. Levät voivat tulevaisuudessa olla merkittävä biomassan lähde ja niitä hyödyntämällä voidaan tuottaa sähkö- ja lämmitysenergiaa sekä erilaisia biopolttoaineita liikenteen ja teollisuuden käyttöön. Leväbiomassasta voidaan myös saada monia erilaisia kaupallistettavia sivutuotteita biopolttoainetuotannon ohessa. Biomassan tuotanto polttoaineiksi painottuu tällä hetkellä ns. energiakasvien viljelyyn. Ollakseen kestävää energiabiomassan tuotanto ei saisi kuitenkaan perustua ravinnoksi kelpaaviin kasveihin tai viedä tilaa niiden viljelyltä. Levät tarvitsevat kasvaakseen vettä, auringon valoa, hiilidioksidia ja ravinteita. Leviä voidaan kasvattaa ruoantuotantoon kelpaamattomalla maalla ja ne kasvavat nopeammin kuin maalla elävät kasvit. Ne voivat lisäksi saada tarvitsemiaan ravinteita jätevesistä ja niiden hiilenlähteenä voidaan käyttää tehdastuotannon savukaasuja. Leväkasvatuksen avulla voitaisiinkin tulevaisuudessa mahdollisesti puhdistaa jätevesiä sekä pienentää hiilidioksidipäästöjä biopolttoainetuotannon yhteydessä. Tässä selvityksessä kartoitettiin levätutkimuksen kansallista ja kansainvälistä tilannetta ja toimintaympäristöä sekä pyrittiin laajentamaan ymmärrystä biotalouden mahdollisuuksista ja haasteista

    Geenien muokkaus uusilla tekniikoilla: kasvit, eläimet, mikrobit

    Get PDF
    CRISPR/Cas9 teknologian soveltaminen genomieditointiin on saanut valtavasti huomiota ja sitä on pidetty mullistavana teknologiana, jonka vaikutukset ja mahdollisuudet ovat paljon laajemmat kuin perinteisten geenimuuntelumenetelmien. Tässä julkaisussa, joka on valmisteltu geenitekniikan lautakunnan pyynnöstä keväällä 2018 valmistuneen muistion pohjalta, selvitetään esimerkkien avulla CRISPR/Cas9 teknologian erilaisia sovelluksia erityisesti kasvinjalostuksessa ja malarian torjunnassa. Mikrobeihin kohdistuvaa genomie-ditointia sivutaan lyhyesti. CRISPR/Cas9-teknologia mahdollistaa myös populaatioissa itseään levittävien geenielementtien (ns. geeniajurien) rakentamisen. Julkaisussa tarkas-tellaan myös genomieditointisovellusten suhdetta geenitekniikkalainsäädäntöön. Erityisen ongelman muodosti pitkään se, että oli epäselvää miten EU:n lainsäädäntöä sovelletaan uusiin tekniikoihin, jotka mahdollistavat kohdennetun mutageneesin tavalla, jota ei voi erottaa luonnon mutaatioista. Tilannetta on selkeyttänyt EU-tuomioistuimen (EUT) heinä-kuussa 2018 tekemä päätös, jossa se otti kantaa uusien mutageneesitekniikoiden juridiseen asemaan. Biotekniikan neuvottelukunta laatii terveyskysymyksistä erillisen selvityksen. </p

    Roadmap for implementing environmental DNA (eDNA) and other molecular monitoring methods in Finland–Vision and action plan for 2022–2025

    Get PDF
    Technological development in molecular methodology has been extremely fast in the past two decades, and groundbreaking new approaches have been introduced. It is now possible to detect and quantify DNA or RNA of target species or even map the whole species community in environmental samples of water, sediment, soil, air or assemblages of whole organisms. Moreover, the costs of high-throughput sequencing and other advanced molecular methods have decreased and methodological pipelines from sampling to data analysis developed sufficiently to allow large-scale, routine application of the new methods in environmental monitoring. This presents a huge opportunity to improve the coverage, accuracy and cost-efficiency of monitoring, enabling a much more complete picture of biodiversity and the state of the environment and their trends. As the new European Biodiversity Strategy for 2030 and other international policies to halt biodiversity loss and the degradation of habitats are translated into concrete measures, the quality of the monitoring data will play a crucial role in determining their success or failure. In this roadmap commissioned by the Finnish Ministry of the Environment, we assess the state-ofthe-art in molecular monitoring methods in Finland within the international context, identify challenges and development areas that remain to be addressed and propose an action plan for promoting the coordinated implementation of molecular methods in national monitoring programs. Apart from the most recent scientific literature, our analysis is based on survey results, direct enquiries and interviews. Participation of the national community of experts from different sectors was enabled and invited at several stages of the roadmap preparation. Internationally, molecular monitoring methods are being actively developed and are routinely implemented in monitoring across different taxa and ecosystems. In Finland, molecular monitoring methods have been tested and piloted by all major institutions responsible for environmental monitoring, and the methods are already applied routinely in the monitoring of individual game species such as the wolf and European and Canadian beaver. However, other areas such as the monitoring of biodiversity, threatened species, non-mammalian invasive species or emerging plant or animal pests remain less developed, and national efforts and expertise are scattered across different organizations. Funding and know-how are perceived as the most important factors limiting molecular monitoring method implementation. We estimate that extensive, routine implementation of a wide range of molecular monitoring methods is conceivable in Finland before 2030. As the primary development areas for reaching this goal, we identify (i) international coordination and standard development, (ii) networking across sectors, (iii) education, (iv) infrastructure, (v) reference sequence libraries and the mapping of whole genomes, and (vi) modelling and analysis tool development. For concrete actions in 2022–2025, we propose (1) a cross-governmental funding instrument, (2) a permanent working group responsible for national and international coordination, (3) a national network and (4) an online platform to enhance interaction and knowledge transfer, as well as (5) a national data management system with collectively agreed data and metadata formats and standards

    Roadmap for implementing environmental DNA (eDNA) and other molecular monitoring methods in Finland – Vision and action plan for 2022–2025

    Get PDF
    Roadmap for implementing environmental DNA (eDNA) and other molecular monitoring methods in Finland – Vision and Action Plan for 2022-2025 Technological development in molecular methodology has been extremely fast in the past two decades, and groundbreaking new approaches have been introduced. It is now possible to detect and quantify DNA or RNA of target species or even map the whole species community in environmental samples of water, sediment, soil, air or assemblages of whole organisms. Moreover, the costs of high-throughput sequencing and other advanced molecular methods have decreased and methodological pipelines from sampling to data analysis developed sufficiently to allow large-scale, routine application of the new methods in environmental monitoring. This presents a huge opportunity to improve the coverage, accuracy and cost-efficiency of monitoring, enabling a much more complete picture of biodiversity and the state of the environment and their trends. As the new European Biodiversity Strategy for 2030 and other international policies to halt biodiversity loss and the degradation of habitats are translated into concrete measures, the quality of the monitoring data will play a crucial role in determining their success or failure. In this roadmap commissioned by the Finnish Ministry of the Environment, we assess the state-of-the-art in molecular monitoring methods in Finland within the international context, identify challenges and development areas that remain to be addressed and propose an action plan for promoting the coordinated implementation of molecular methods in national monitoring programs. Apart from the most recent scientific literature, our analysis is based on survey results, direct enquiries and interviews. Participation of the national community of experts from different sectors was enabled and invited at several stages of the roadmap preparation. Internationally, molecular monitoring methods are being actively developed and are routinely implemented in monitoring across different taxa and ecosystems. In Finland, molecular monitoring methods have been tested and piloted by all major institutions responsible for environmental monitoring, and the methods are already applied routinely in the monitoring of individual game species such as the wolf and European and Canadian beaver. However, other areas such as the monitoring of biodiversity, threatened species, non-mammalian invasive species or emerging plant or animal pests remain less developed, and national efforts and expertise are scattered across different organizations. Funding and know-how are perceived as the most important factors limiting molecular monitoring method implementation. We estimate that extensive, routine implementation of a wide range of molecular monitoring methods is conceivable in Finland before 2030. As the primary development areas for reaching this goal, we identify (i) international coordination and standard development, (ii) networking across sectors, (iii) education, (iv) infrastructure, (v) reference sequence libraries and the mapping of whole genomes, and (vi) modelling and analysis tool development. For concrete actions in 2022–2025, we propose (1) a cross-governmental funding instrument, (2) a permanent working group responsible for national and international coordination, (3) a national network and (4) an online platform to enhance interaction and knowledge transfer, as well as (5) a national data management system with collectively agreed data and metadata formats and standards. ---------- Kansallinen tiekartta ympäristö-DNA:n ja muiden molekyylibiologisten seurantamenetelmien käyttöönotolle – visio ja toimenpidesuunnitelma vuosille 2022-2025 Molekyylibiologisten menetelmien teknologinen kehitys on ollut ennennäkemättömän nopeaa kahden viime vuosikymmenen aikana. Uudet menetelmät mahdollistavat kohdelajien DNA:n tai RNA:n havaitsemisen ja runsausmäärityksen tai koko eliöyhteisön kartoittamisen esimerkiksi vesi-, sedimentti-, maaperä- tai ilmanäytteistä tai kokonaisia yksilöitä sisältävistä kokoomanäytteistä. Massiivisen rinnakkaissekvensoinnin ja muiden menetelmien kustannukset ovat merkittävästi laskeneet ja menetelmäketjut näytteenotosta tulosten tulkintaan kehittyneet asteelle, joka mahdollistaa niiden laajamittaisen, rutiininomaisen käytön ympäristön seurannassa. Uusien menetelmien avulla voimme parantaa seurannan kattavuutta, tarkkuutta ja kustannustehokkuutta ja siten täydentää seurannan kautta muodostuvaa kuvaa luonnon monimuotoisuudesta ja sen muutoksista. Tälle tiedolle on suuri tarve – laadukas seuranta on keskeinen edellytys sille, että EU:n uuden biodiversiteettistrategian ja muiden luontokadon ja elinympäristöjen tilan huonontumisen pysäyttämiseen tähtäävien kansainvälisten sitoumusten toimeenpano onnistuu. Tässä ympäristöministeriön tilaamassa tiekartassa arvioimme molekyylibiologisten seurantamenetelmien nykytilaa Suomessa osana laajempaa kansainvälistä kenttää, tunnistamme huomiota vaativia haasteita ja kehityskohteita ja ehdotamme konkreettisia toimenpiteitä molekyylibiologisten seurantamenetelmien koordinoidun käyttöönoton edistämiseksi lähivuosien aikana. Selvityksemme perustuu uusimman tieteellisen kirjallisuuden lisäksi kyselytutkimukseen sekä suoriin tiedusteluihin ja haastatteluihin. Yhteiskunnan eri sektoreita edustava kansallinen asiantuntijayhteisö osallistui tiekartan valmisteluun työn eri vaiheissa. Molekyylibiologisia seurantamenetelmiä kehitetään parhaillaan aktiivisesti ympäri maailmaa eri eliöryhmille ja ekosysteemeille, ja yksittäisiä menetelmiä on useissa maissa otettu myös rutiininomaiseen käyttöön. Suomessa menetelmiä on kehitetty ja pilotoitu kaikissa keskeisissä ympäristön seurantaa koordinoivissa laitoksissa, ja yksittäisten riistaeläinten kuten suden ja kanadan- ja euroopanmajavan seurannassa ne ovat jo rutiinikäytössä. Biodiversiteetin, uhanalaisten lajien, vieraslajien (nisäkkäitä lukuun ottamatta) ja muiden haitallisten lajien kansallisessa seurannassa molekyylibiologisten menetelmien käyttö on kuitenkin vielä kokeiluasteella, ja kehittämishankkeiden ja asiantuntijuuden kenttä on hajanainen. Riittämätöntä rahoitusta ja osaamista pidetään alan asiantuntijoiden keskuudessa tärkeimpinä menetelmien käyttöönottoa rajoittavina tekijöinä. Arviomme mukaan laaja kirjo molekyylibiologisia seurantamenetelmiä olisi mahdollista ottaa laajamittaiseen rutiininomaiseen käyttöön vuoteen 2030 mennessä. Tärkeimmiksi kehityskohteiksi nousivat (i) kansainvälinen koordinaatio ja menetelmien standardointi, (ii) organisaatioiden ja sektoreiden välinen verkostoituminen, (iii) koulutus, (iv) infrastruktuuri, (v) referenssisekvenssikirjastot ja kokonaisten genomien kartoittaminen sekä (vi) malli- ja analyysityökalujen kehittäminen. Konkreettisiksi toimenpiteiksi vuosille 2022-2025 esitämme (1) poikkihallinnollista rahoitusohjelmaa molekyylibiologisten seurantamenetelmien käyttöönottoa edistäville tutkimus- ja kehityshankkeille, (2) pysyvää työryhmää kansallisen ja kansainvälisen koordinaation edistämiseksi, (3) olemassa olevan kansallisen asiantuntijaverkoston laajentamista, (4) internet-pohjaista alustaa vuorovaikutuksen ja tiedonjaon tehostamiseksi sekä (5) kansallista, yhdessä sovittuja data- ja metadatastandardeja noudattavaa molekyylibiologisten seuranta-aineistojen tiedonhallintajärjestelmää
    corecore