4,827 research outputs found
Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model
International audienceBlack carbon (BC) particles in the atmosphere have important impacts on climate. The amount of BC in the atmosphere must be carefully quantified to allow evaluation of the climate effects of this type of aerosol. In this study, we present the treatment of BC aerosol in the developmental version of the 4th generation Canadian Centre for Climate modelling and analysis (CCCma) atmospheric general circulation model (AGCM). The focus of this work is on the conversion of insoluble BC to soluble/mixed BC by physical and chemical ageing. Physical processes include the condensation of sulphuric and nitric acid onto the BC aerosol, and coagulation with more soluble aerosols such as sulphates and nitrates. Chemical processes that may age the BC aerosol include the oxidation of organic coatings by ozone. Four separate parameterizations of the ageing process are compared to a control simulation that assumes no ageing occurs. These simulations use 1) an exponential decay with a fixed 24h half-life, 2) a condensation and coagulation scheme, 3) an oxidative scheme, and 4) a linear combination of the latter two ageing treatments. Global BC burdens are 2.15, 0.15, 0.11, 0.21, and 0.11TgC for the control run, and four ageing schemes, respectively. The BC lifetimes are 98.1, 6.6, 5.0, 9.5, and 4.9 days, respectively. The sensitivity of modelled BC burdens, and concentrations to the factor of two uncertainty in the emissions inventory is shown to be greater than the sensitivity to the parameterization used to represent the BC ageing, except for the oxidation based parameterization. A computationally efficient parameterization that represents the processes of condensation, coagulation, and oxidation is shown to simulate BC ageing well in the CCCma AGCM. As opposed to the globally fixed ageing time scale, this treatment of BC ageing is responsive to varying atmospheric composition
Target cell-dependent T cell-mediated lysis of vaccinia virus-infected cells
Vaccinia virus specific cytotoxicity against infected target cells was observed in vitro. Spleen lymphocytes from normal and immunized mice of the inbred strains C3H and DBA/2 were incubated with vaccinia virus-infected and non-infected 51Cr-labeled mastocytoma P-815-X2 cells and L-929 fibroblasts, which were used as targets. Cytotoxic lymphocytes could be isolated from the mice as early as 2 days after infection with vaccinia virus. The highest cytotoxic effect was obtained with lymphocytes taken 6 days after infection. The degree of lysi was correlated with the ratio of immune lymphocytes to target cells. Specific blocking of target cell lysis resulted after addition of anti-vaccinia antibody from different sources. The effector cells could be characterized as T cells by elimination of macrophages and B cells. Target cell killing was only possible in a syngeneic system; allogeneic infected target cells were not lysed significantly
Radiative rotational lifetimes and state-resolved relative detachment cross sections from photodetachment thermometry of molecular anions in a cryogenic storage ring
Photodetachment thermometry on a beam of OH in a cryogenic storage ring
cooled to below 10 K is carried out using two-dimensional, frequency and time
dependent photodetachment spectroscopy over 20 minutes of ion storage. In
equilibrium with the low-level blackbody field, we find an effective radiative
temperature near 15 K with about 90% of all ions in the rotational ground
state. We measure the J = 1 natural lifetime (about 193 s) and determine the
OH rotational transition dipole moment with 1.5% uncertainty. We also
measure rotationally dependent relative near-threshold photodetachment cross
sections for photodetachment thermometry.Comment: Manuscript LaTeX with 5 pages, 3 figures, and 1 table plus LaTeX
supplement with 12 pages, 3 figures and 3 tables. This article has been
accepted by Physical Review Letter
Measuring the Digital Millennium against the Darknet: Implications for the Regulation of Technological Protection Measures
Low temperature ellipsometry of NaV2O5
The dielectric function of alpha'NaV2O5 was measured with electric field
along the a and b axes in the photon energy range 0.8-4.5 eV for temperatures
down to 4K. We observe a pronounced decrease of the intensity of the 1 eV peak
upon increasing temperature with an activation energy of about 25meV,
indicating that a finite fraction of the rungs becomes occupied with two
electrons while others are emptied as temperature increases. No appreciable
shifts of peaks were found s in the valence state of individual V atoms at the
phase transition is very small. A remarkable inflection of this temperature
dependence at the phase transition at 34 K indicates that charge ordering is
associated with the low temperature phase.Comment: Revisions in style and order of presentation. One new figure. In
press in Physical Review B. REVTeX, 4 pages with 4 postscript figure
Orbital order in the low-dimensional quantum spin system TiOCl probed by ESR
We present electron spin resonance data of Ti (3) ions in single
crystals of the novel layered quantum spin magnet TiOCl. The analysis of the g
tensor yields direct evidence that the d_{xy} orbital from the t_{2g} set is
predominantly occupied and owing to the occurrence of orbital order a linear
spin chain forms along the crystallographic b axis. This result corroborates
recent theoretical LDA+U calculations of the band structure. The temperature
dependence of the parameters of the resonance signal suggests a strong coupling
between spin and lattice degrees of freedom and gives evidence for a transition
to a nonmagnetic ground state at 67 K.Comment: revised version, accepted for publication in Phys. Rev. B, Rapid Com
The nature of localization in graphene under quantum Hall conditions
Particle localization is an essential ingredient in quantum Hall physics
[1,2]. In conventional high mobility two-dimensional electron systems Coulomb
interactions were shown to compete with disorder and to play a central role in
particle localization [3]. Here we address the nature of localization in
graphene where the carrier mobility, quantifying the disorder, is two to four
orders of magnitude smaller [4,5,6,7,8,9,10]. We image the electronic density
of states and the localized state spectrum of a graphene flake in the quantum
Hall regime with a scanning single electron transistor [11]. Our microscopic
approach provides direct insight into the nature of localization. Surprisingly,
despite strong disorder, our findings indicate that localization in graphene is
not dominated by single particle physics, but rather by a competition between
the underlying disorder potential and the repulsive Coulomb interaction
responsible for screening.Comment: 18 pages, including 5 figure
One-dimensional dynamics of the d-electrons in -NaVO
We have studied the electronic properties of the ladder compound
-NaVO, adopting a joint experimental and theoretical
approach. The momentum-dependent loss function was measured using electron
energy-loss spectroscopy in transmission. The optical conductivity derived from
the loss function by a Kramers-Kronig analysis agrees well with our results
from LSDA+U band-structure calculations upon application of an
antiferromagnetic alignment of the V~3 spins along the legs and an
on-site Coulomb interaction U of between 2 and 3 eV. The decomposition of the
calculated optical conductivity into contributions from transitions between
selected energy regions of the DOS reveals the origin of the observed
anisotropy of the optical conductivity. In addition, we have investigated the
plasmon excitations related to transitions between the vanadium states within
an effective 16 site vanadium cluster model. Good agreement between the
theoretical and experimental loss function was obtained using the hopping
parameters derived from the tight binding fit to the band-structure and
moderate Coulomb interactions between the electrons within the ab plane.Comment: 23 pages, 8 figures; submitted to PR
- …
