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Investigating the Stimulus-Dependent Temporal
Dynamics of the BOLD Signal Using Spectral
Methods
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Purpose: To compare several spectral parameters using
different durations of visual hemifield stimulation in order
to explore the different temporal behavior of the blood ox-
ygenation-level dependent (BOLD) signal in various brain
regions.

Materials and Methods: Spectral methods were applied to
three different groups of subjects with visual stimulation
lasting 6, 12, and 30 seconds. Furthermore, diffusion
weighting was applied in an interleaved way. The core of the
data processing was the computation of the spectral den-
sity matrix using the multidimensional weighted covari-
ance estimate. Spectral parameters of coherence and phase
shift were computed.

Results: The correlation between signal changes and phase
shifts was dependent on the duration of the visual stimu-
lation. The shorter the duration of visual stimulation, the
stronger the correlation between percentage signal change
and phase shift.

Conclusion: The experiments with short and long stimuli
differed mainly in the distribution of the activated voxels in
the plane of percentage signal change and phase shift. It
was revealed that the height of the signal change depends
on the phase shift, whereas the diffusion weighting has no
influence.

Key Words: functional magnetic resonance imaging; fMRI;
diffusion weighting; spectral analysis; coherence; phase
shift
J. Magn. Reson. Imaging 2003;17:375–382.
© 2003 Wiley-Liss, Inc.

THE AIM OF THIS STUDY was to investigate the stim-
ulus-dependent temporal dynamics of the blood oxy-
genation-level dependent (BOLD) response function in
the human brain.

Recent studies investigating the BOLD response
function in the spectral domain employed long blocks of
visual stimuli(1,2). In the current work, spectral meth-
ods are applied to functional magnetic resonance imag-
ing (fMRI) data using different durations of visual hemi-
field stimulation. Several spectral parameters are
compared. Our analysis reveals differences in the dis-
tribution of the phase shifts of activated voxels.

There is still much controversy concerning the rea-
sons for the varying temporal behavior of the BOLD
signal in different brain regions (3–7). Using the general
linear model, Miezin et al (3) investigated the relative
timing of the BOLD signal in different cerebral regions
within the same subject. Their results showed only a
rough temporal relation between the BOLD signal in
different brain regions. The authors pointed to differ-
ences in the vasculature as the reason for the inability
to reliably predict BOLD response in different cerebral
regions.

A further study by Menon et al (4) also sought to
explore temporal variations in the onset of the BOLD
response in different brain regions. The authors dis-
cussed various features of the fMRI signal that can be
used to describe the varying temporal behavior of the
BOLD response. From their data, robust timing infor-
mation among activated brain regions could be re-
trieved which corresponded exactly to the stimulus pre-
sentation timing, even across hemispheres. However,
there are several possible explanations for the variation
in the observed delays. Because the observed BOLD
contrast is sensitive to the vessel diameter (5), different
delays could be due to differences in the underlying
vasculature across regions. Specifically, delays could
be brought on by larger-scale veins. However, Rosen et
al(6) observed the longest delays even in regions where
the vasculature is minimal. Therefore, it was concluded
that additional factors may influence the delay of the
BOLD signal (6,7).

The MR signal can be considered to consist of an
extravascular and an intravascular contribution (8,9).
The intravascular signal contribution associated with
postcapillary vessels can be suppressed using diffusion
weighting, because the signal of flowing spins is
dephased (10). This can be achieved by inserting a bi-

Max Planck Institute of Cognitive Neuroscience, Leipzig, Germany.
*Address reprint requests to: K. M., Max Planck Institute of Cognitive
Neuroscience, Stephanstrasse 1a, D-04103 Leipzig, Germany.
E-mail: karstenm@cns.mpg.de
Received March 21, 2002; Accepted October 23, 2002
DOI 10.1002/jmri.10268
Published online in Wiley InterScience (www.interscience.wiley.com).

JOURNAL OF MAGNETIC RESONANCE IMAGING 17:375–382 (2003)

© 2003 Wiley-Liss, Inc. 375



polar gradient pair before the readout of the echo-pla-
nar image. In this study, we applied the diffusion
weighting in an interleaved manner, i.e., only on alter-
nate echo-planar imaging (EPI) scans. This allowed a
better comparison of the BOLD signal with and without
diffusion weighting, since the method does not suffer
from the intertrial variability of the BOLD signal (11).

Maps of coherence and phase shift were generated
from both the diffusion- and nondiffusion-weighted EPI
time series using spectral analysis methods as de-
scribed in 2. A brief introduction into the theory is given
in the following section. The method provides informa-
tion about the temporal dynamics of the BOLD re-
sponse function. The core of the method is the estima-
tion of the cross-covariance function and the spectral
density matrix.

The sample coherence measure can be interpreted as
a measure of the degree of linear association of the time
series. Therefore, brain regions with a high coherence
value can be considered as areas that belong to the
same network structure. Because of the different rela-
tive timing of the onset of the BOLD response in differ-
ent brain regions (4), phase shifts can be used to inves-
tigate the temporal behavior of the hemodynamic
response.

MATERIALS AND METHODS

Spectral Theory

In this section, we introduce the spectral parameters
that are used in this work. The theory of spectral anal-
ysis was previously successfully applied to fMRI data
(1,2). For a detailed treatment see the monographs of
Hannan (12) and Priestley (13).

Real, time-varying physical processes require more
than one measurement to give a description of their
behavior. Thus, the fMRI process at each time point is
represented by a set of time-dependent measurements
X(t) � X1(t), . . . ,XN(t). Suppose this vector contains sto-
chastic processes in the same probability space. Fur-
thermore, let us assume that the mean values are con-
stant in time and the covariances depend upon the time
displacement, and not on the time point itself, i.e.,

E�Xj�� � t�Xk�t�� � E�Xj���Xk�0�� � Cjk��� (1)

where Xj and Xk are arbitrary elements of the vector X.
The function Cjk(�) is called the cross-covariance func-
tion of the stochastic processes Xj and Xk. The covari-
ances depend on �, the lag between the time arguments,
but not on t. Although the autocovariances Cjj(�) are
even functions, the cross-covariance functions are not.
This has an important effect on the spectral represen-
tation of the cross-covariances. There exists a unique
nonnegative definite measure Fjk such that

Cjk��� � � ei��dFjk��� (2)

Equation [2] is the well-known spectral representa-
tion, and the measure Fjk is called the cross-spectral

distribution of the stochastic processes Xj and Xk (see,
e.g., 13). The measure � is the angular frequency mea-
sured in radians per unit time. Since the cross-covari-
ance function is not even, the cross-spectral distribu-
tion is a complex value with a nonvanishing imaginary
part. The measure Fjk describes the relationship be-
tween the two time series Xj and Xk that belong to the
multidimensional stochastic process. The derivative of
this function is called the cross-spectral density func-
tion

fjk��� �
dFjk���

d�
(3)

which is the basic second-order parameter for our fur-
ther considerations. This function can be interpreted as
a measure of covariance between the respective fre-
quency components in the two time series.

In the following, we are interested in the relation
between pairs of time series Xj(t) and Xk(t) of the multi-
variate stochastic process. The interrelation can be de-
scribed via the bivariate spectral densities. These pa-
rameters are also called bivariate spectral parameters.
The polar representation

fjk��� � � fjk����ei�jk��� (4)

of the spectral density function further gives a set of
bivariate spectral parameters that play a central role in
this study. The function �jk(�) is called the phase shift of
Xj(t) over Xk(t), and is commonly interpreted as the av-
erage phase shift of two time series at frequency �. The
phase shift can also be converted to time lag by dividing
by the frequency �. Thus the parameter of time lag
between two time series can be computed at various
frequencies of interest. The function

	jk��� �
� fjk����

�fjj���fkk����1/2 (5)

is called coherence (or coefficient of coherence) and is a
crucial parameter for measuring relationships between
time series. It is a measure for the degree of linear
association between two time series and can be inter-
preted quantitatively. In principle, the coherence can be
referred to as a generalization of the correlation coeffi-
cient in the frequency domain. The extreme values, zero
and one, correspond to the complete lack of correlation
and the maximal degree of correlation possible for a
definition of correlation that makes sense in the time-
series context.

In the following, we give an introduction to how an
estimation of spectral parameters is obtained. Certain
characteristics of random variables are estimated using
a sample that can be considered a realization of the
hidden phenomenon. Usually the sample is a set of
realizations of a stochastic process for a small subset of
time points only. However, if the observations are inter-
preted as realizations of a random process, there is
often only one realization with many timesteps. In this
case, the characteristics of the random variables are
estimated by averaging over time and not over realiza-
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tions. Let X(t) be a realization of a multidimensional
stochastic process. Without loss of generality, let us
assume that X(t) is already zero-mean. Then the func-
tion

ĈN, jk�s� � �1
N �

t�1

N
s

Xj�s � t�Xk�t�, s � 0,1,. . .,N � 1

ĈN,kj�
s�, s � 
1,. . .,
N � 1

(6)

is called the multidimensional weighted covariance es-
timate based on the realization X(t). For �s� � N, the
estimation for the cross-covariance is zero. A naive way
to estimate the spectral density would be to compute
the discrete Fourier transform of the multidimensional
weighted covariance estimate, which is also called the
periodogram matrix.

Although the covariance estimate converges to the
covariance, its discrete Fourier transform does not con-
verge to the spectral density. Therefore, in general, the
periodogram is not an appropriate estimation for the
spectral density (12). The problem is that in the neigh-
borhood of N, only a small set of observations is used to
estimate the covariance function. In the worst case,
only one element of the time course is used. Such an
estimation is not admissible. Therefore, a number MN �
N is chosen in order to determine how many elements of
the covariance estimation are used to estimate the
spectral density. This number MN is called the maximal
displacement or spectral window size. The estimation of
f has the form

f̂N,jk��� �
1

2� �
s�
MN

MN

e
i�s
� s
MN

� ĈN, jk�s� (7)

where the function 
 is called a lag window generator.
Such a weighting function is used because the period-
ogram has variance that does not approach zero with
increasing N. The lag window generator 
 is a real, even
and bounded function which is defined on the interval
[
1, 1]. There are many kinds of such functions. For
our calculations, we use the Parzen lag window gener-
ator, which is very convenient for computing the spec-
tral density estimate. See 13 for a discussion of various
lag window generators.

Using the estimation in Eq. [7], one can give an esti-
mation of the coefficient of coherence and phase shift
inserting the spectral density estimate in Eq. [4] and [5].
In this study, we compute the sample coherence and
give an estimation for the phase angle for different fMRI
time series. Because we are also interested in the dis-
tribution of the estimated parameters, confidence inter-
vals (14) for the obtained estimations can be computed.
For a detailed treatment, see also Hannan’s excellent
monograph (13).

Stimuli and Imaging Procedure

Experiments were performed using a 3 T whole-body
scanner (Bruker Medical, Ettlingen, Germany). A bird-
cage resonator of 28 cm i.d. was used for RF transmis-

sion and signal reception. Gradient performance was
45 mT/m switchable within 320 �s. For functional im-
aging a gradient-echo EPI sequence with a 64 � 64
acquisition matrix and a voxel size of 3 � 3 � 5 mm was
used (acquisition bandwidth-100 kHz, echo train
length-41 msec). The center of k-space was acquired at
25% of the echo train length. A flip angle of 45° for RF
excitation and a repetition time (TR) of 500 msec were
used. The echo time (TE) was set to 48 msec. Diffusion
weighting was added by inserting a bipolar gradient
pair applied simultaneously along the xyz-axes with a
spacing between the onset of the bipolar gradients of
� � 20 ms and a duration of � � 15 ms. The gradient
strength was set to give a b-value of 50 seconds mm
2.
A b-value of 50 seconds mm
2 results in a vascular
signal loss of more than 75% (15).

In the same plane as the functional images, conven-
tional anatomical images were acquired using a T1-
weighted Modified Driven-Equilibrium Fourier Trans-
form (MDEFT) (16) sequence (TE � 10 msec, TR � 1300
msec, 256 � 256 matrix). These images were obtained
with a non-slice-selective inversion pulse followed by a
single excitation of each slice (17).

A total of eight subjects (three males and five fe-
males), mean age-25 years participated in the experi-
ment. All were right-handed and had normal or cor-
rected-to-normal vision. All subjects provided informed
consent prior to the scanning session. The subjects was
on the scanner bed, and cushions were used to reduce
head motion. Stimuli were projected by an LCD projec-
tor onto a back-projection screen mounted in the bore
of the magnet behind the subject’s head. Subjects
viewed the screen wearing mirror glasses.

For task-induced activation a simple visual task was
employed. During periods of control, subjects had to
watch a small gray fixation-cross positioned in the center
of a black screen. To focus their attention, the subjects
had to press a button each time they saw a small black
hole appear in the center of the fixation-cross at random-
ized time intervals. During periods of stimulation, a 7 � 5
array of red L-shapes randomly rotating at a frequency of
8 Hz on the black background was presented as a strong
visual stimulus while the subjects had to perform the
same search task as during the control periods.

The length of visual stimulation was not equal for all
subjects. Subjects were partitioned into three groups
with different durations of visual hemifield stimulation.
For the first group of two subjects, stimuli lasted 30
seconds with control periods of 30 seconds. Five com-
plete cycles of visual stimulation and control (a total of
600 EPI scans) were recorded. The second group of two
subjects had stimuli with a duration of 12 seconds and
control periods with a length of 78 seconds. Six com-
plete cycles of visual stimulation and control (a total of
1080 EPI scans) were recorded. For the third group of
four subjects, the stimuli lasted 6 seconds with control
periods of 54 seconds. Six complete cycles of visual
stimulation and control (a total of 720 EPI scans) were
recorded. For all three groups, the control periods
lasted at least 30 seconds to ensure that the BOLD
signal returned to resting level (18).

For all subjects, three slices were acquired parallel to
and centered in the primary visual cortex. One com-
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plete dummy cycle, i.e. stimulation, RF pulses and gra-
dient noise, was performed before data recording was
commenced. Diffusion weighting was applied in an in-
terleaved manner, i.e., every non-diffusion-weighted
EPI scan was followed by a diffusion-weighted EPI scan.

Data Analysis

fMRI data were analyzed on an SGI Origin 2000 using
spectral analysis tools implemented as described in the
section on estimation of spectral parameters. The soft-
ware was validated in a previous study (2) using syn-
thetic data sets. For preprocessing, statistics, and visu-
alization of the data, the software package Lipsia (19)
was used.

First, slice acquisition time differences were corrected
by sinc-interpolation. The mathematical background is
the well-known Nyquist-Shannon sampling theorem,
which shows that any continuous band-limited func-
tion is completely determined by discrete measure-
ments taken at a constant sampling interval (20). Func-
tional data were corrected for motion using a matching
metric based on linear correlation. Baseline drifts were
removed by temporal filtering, applying a high-pass fil-
ter using a discrete Fourier transform with a cutoff
frequency of 1/120 Hz. Preprocessing was finalized by
applying spatial filtering using a Gaussian kernel with a
standard deviation (SD) of 0.8 pixels.

The statistical evaluation was based on least-squares
estimation using the general linear model (21) for seri-
ally autocorrelated observations (22,23). The design
matrix was generated using a boxcar (square wave)
function and a response delay of 6 seconds. The model
equation, including the observation data, the design
matrix, and the error term, was convolved with a
Gaussian kernel of dispersion of 4 seconds full width at
half maximum (FWHM). The model includes an esti-
mate of temporal autocorrelation that is used to esti-
mate the effective degrees of freedom (23).

The main data processing task was the computation
of the spectral density matrix using the multidimen-
sional weighted covariance estimate. To select a refer-
ence voxel, we chose the maximum of the associated
statistical parametric map. Computation was per-
formed for each voxel of the image. The spectral density
matrix was computed for the task frequency obtained
by the power spectrum of the data. For all subjects, the
Parzen lag window generator was used as the specific
weight sequence. However, the properties of the spec-
tral density estimate depend more critically on the
choice of the spectral window size than on the form of
the window, i.e., the lag window generator (13). We
adjusted the spectral window size in order to get an
optimal sampling rate for the data in the frequency
domain with appropriate equivalent degrees of free-
dom � 50 (14). To compare the results between sub-
jects, the size of the spectral window was set to 1/10 of
the length of the timecourse. The resulting equivalent
degree of freedom was 53.3 for all subjects.

Using the estimated spectral density matrix, the sam-
ple coherence matrix and the matrix of the phase shift
estimation were computed. These matrices contain the
bivariate sample coherence measure and the phase

shift estimation of the time courses of the selected ref-
erence voxel with all voxels of the image. For visualiza-
tion, maps of sample coherence and phase shift were
generated that were overlaid on associated anatomical
images. The maps of coherence were thresholded. Vox-
els with a coherence value of more than a threshold of
0.8 were used to visualize the phase shift. To validate
the estimation of coherence and phase, confidence in-
tervals were computed as described in 2 and 14. Also,
maps of confidence intervals were generated for voxels
with a coherence value of � 0.8, and for visualization
these maps were overlaid on anatomical images.

We also computed maps of percentage signal changes
of the BOLD signal. For each trial, the amplitude of the
BOLD signal was computed by subtracting the rest
amplitude from the peak amplitude of the signal, which
were obtained by averaging neighboring time points
near the end of the trial and at the maximum of the
BOLD signal, respectively. For each voxel, percentage
signal changes were finally averaged over all trials.

RESULTS

For all subjects, the data were processed as described
in the previous section. Diffusion and non-diffusion-
weighted functional images were evaluated separately.
Because of the interleaved measurement technique,
maps of diffusion and non-diffusion-weighted images
could be compared. Maps of sample coherence show
congruent regions in diffusion and non-diffusion-
weighted data sets for all subjects. Striate and extra-
striate visual cortices show a sample coherence above
the selected threshold of 0.8. Because the coherence
coefficient can be interpreted as a measure of the de-
gree of linear association of time series, the map of
coherence shows brain regions that belong to a network
structure. In our experiment, visual cortical regions
around the calcarine sulcus up to extrastriate visual
areas belong to that network.

The maps of phase shift show voxels with positive and
negative phase displacements in the primary visual cor-
tex. Brain regions with an early response can be sepa-
rated from areas with a late response. Figure 1 shows
an example with a visual stimulation duration of 30
seconds, and Figure 2 shows phase maps with a visual
stimulation duration of 6 seconds. These maps show
BOLD phase shifts of about 1 and 2 seconds for the
short and long stimulus, respectively. The dot plots of
Figures 3 and 4 also show these phase shifts for the
short and long stimulus. Moreover, the phase shifts of
the BOLD signal can also be seen in the trial averages
(see Fig. 1 and 2). The number of coherent voxels in-
creases with the length of the stimulation (see brack-
eted numbers in the red column of Table 1).

To evaluate the similarity between phase shifts in
non-diffusion- and diffusion-weighted fMRI time series,
the correlation was calculated within areas showing a
sample coherence value above 0.8. We found a strong
correlation above 0.8 for all subjects (see red in Table 1).
This correlation is independent of the duration of visual
stimulation, and the selection of the spectral window
size.
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The correlation between the percentage signal
changes and the phase shifts depends on the duration
of the visual stimulation (last two columns of Table 1).
The correlation increases with decreasing length of vi-
sual stimulation. For visual stimuli of 30 seconds, the
correlation is around zero (see first rows in Table 1, and
Fig. 3). For the stimulation duration of 12 seconds, the
correlation is around 0.4–0.5, and for the visual stimuli
of 6 seconds the correlation is above 0.6 (see Table 1
and Fig. 4). Therefore, the shorter the duration of visual
stimulation, the stronger the correlation between the
percentage signal change and phase shift. This obser-
vation is obtained for both diffusion- and non-diffusion-
weighted data sets for all subjects (Table 1). This fact
can also be illustrated by looking at the high correlation
between the phase maps of diffusion- and non-diffu-
sion-weighted time courses.

DISCUSSION

In many brain studies, information about the temporal
behavior of the hemodynamic response would be ex-
tremely interesting. In this work, the temporal dynam-
ics of the BOLD response is investigated using varying
durations of visual stimulation. Critical to the method
is the estimation of the cross-covariance function and
the spectral density matrix. The entries of this matrix
can be used to compute estimations of further spectral

parameters. In the present study, the spectral mea-
sures of coherence and phase shift were computed.

BOLD phase displacements between the cortical re-
gions of individual subjects have also been discussed in
the literature (6,7). Delays in peak times between dif-
ferent cortical regions in the order of seconds have been
reported. However, the source of these phase shifts is
still unknown. There are several possible explanations
for this phenomenon. One interpretation is that the
observed phase displacements may result from differ-
ences in the underlying vasculature (3,5). However,
Rosen et al (6) noted the longest delays even in regions
where the large vasculature is minimal. To further in-
vestigate this issue, we applied spectral methods to
non-diffusion-and diffusion-weighted fMRI time series
using visual stimuli of varying durations.

At 3 Tesla, the use of diffusion-weighting gradients
removes most of the intravascular (but not the ex-
travascular) signal contributions. The similar temporal
behavior of the intra- and extravascular spaces, as in-
dicated by similar spectral parameters for non-diffu-
sion- and diffusion-weighted data, is not unexpected.
Both are mainly determined by the concentration of
deoxyhemoglobin in the blood, which changes instan-
taneously.

In the following, we discuss the observed stimulus-
dependent distribution of activated voxels in the plane
of phase shift and percentage signal change. In order to

Figure 1. Several axial slices of an individual subject showing the estimated phase shift evoked by a periodic visual hemifield
stimulation with a duration of 30 seconds and a control period of 30 seconds. The shown phase shifts were converted to time lags
and were computed for brain regions that show at least a sample coherence of 0.8 (visual cortical areas). These time lags
correspond to the trial averages computed for non-diffusion- and diffusion-weighted fMRI time series (right curves). The
correlation between phase displacements of non-diffusion- (first row) and diffusion-weighted fMRI time series (second row) is
above 0.8. This high correlation occurs for all subjects (see red in Table 1) independently of the duration of stimulation.
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Figure 2. This illustration has the same content as Figure 1 for an individual subject using a visual stimulation of 6 seconds
and a control period of 54 seconds. The trial averages (right curves) give first evidence for a relation between the phase shift and
the percentage signal change. The phase shift increases with the signal change. The shorter the duration of visual stimulation,
the stronger the correlation between the percentage signal change and the phase shift.

Figure 3. Maps of signal changes of non-diffusion- (first row) and diffusion-weighted fMRI time series (second row) evoked by a
periodic visual stimulation with a duration of 30 seconds and a control period of 30 seconds. Percentage signal changes were
computed for voxels that show a coherence above 0.8, i.e., voxels that are visualized in Figure 1. Therefore voxels with very low
signal changes do not appear in the image. Correlation between signal changes and phase shifts are around zero for both
non-diffusion-and diffusion-weighted data sets. For both subjects with 30-second stimulation, the correlation is around zero
(see rpe and rpd in the first two columns of Table 1).
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have a physically meaningful zero phase, we calibrated
the phase shift to zero for the voxels with the highest
signal change. For long visual stimuli, voxels with pos-
itive and negative phase shifts are present. In contrast,

for shorter visual stimulation, voxels with a positive
phase shift are nearly absent. This is not a side effect of
calibrating the phase shift, because the zero phase
shifts, i.e., the highest signal changes, are well located

Figure 4. The correlation between percentage signal changes and phase shifts is above 0.6 for all subjects, with visual hemifield
stimulation of 6 seconds (see Table 1 for confidence intervals of the correlation coefficients rpe and rpd). Voxels showing high signal
changes also show a large phase shift to other voxels. Voxels showing an early response (large negative phase shift) show only very
small signal changes. This behavior was observed for both non-diffusion- (blue dots) and diffusion-weighted data sets (red dots).

Table 1
Correlation of BOLD Signal Changes and Phase Shifts*

Subject ts MN red rpe rpd

HS 30/30 30 0.81 (0.78,0.84) [510] 0.00 (–0.07,0.07) [688] –0.01 (–0.09,0.08) [531]
SJ 30/30 30 0.80 (0.75,0.84) [259] –0.07 (–0.17,0.03) [367] 0.02 (–0.09,0.14) [269]
KA 12/78 54 0.82 (0.77,0.85) [244] 0.44 (0.36,0.52) [397] 0.37 (0.26,0.47) [245]
PA 12/78 54 0.80 (0.73,0.85) [130] 0.52 (0.42,0.61) [237] 0.48 (0.34,0.60) [135]
MA 6/54 36 0.91 (0.89,0.93) [219] 0.60 (0.53,0.66) [429] 0.67 (0.59,0.74) [225]
SD 6/54 36 0.93 (0.91,0.95) [165] 0.62 (0.55,0.68) [342] 0.73 (0.65,0.79) [173]
SJ 6/54 36 0.89 (0.85,0.92) [151] 0.68 (0.60,0.75) [196] 0.77 (0.69,0.82) [161]
WC 6/54 36 0.85 (0.80,0.90) [119] 0.71 (0.64,0.78) [197] 0.66 (0.55,0.74) [140]

*Note: The correlation red between phase shifts in non-diffusion- and diffusion-weighted fMRI time series is above 0.8 for all subjects,
independently of the duration of the visual stimuli. For all correlation coefficients, confidence intervals are computed using a probability level
of 0.05. The bracketed numbers show the number of coherent voxels in the map of phase shifts (see Fig. 1 and 2). The other two correlation
coefficients rpe and rpd show the correlation between percentage signal changes and phase shifts for non-diffusion- and diffusion-weighted
data sets. Both correlations rpe and rpd increase with decreasing length of visual stimulation. The column ts shows the duration of stimulation
and rest in seconds. The number MN is the spectral window size that is used for computing the spectral density (see Eq. [7]).
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in the primary visual areas for both the 6-second and
the 30-second stimulus as demonstrated by the maps
of phase shift.

In the case of the 6-second stimulus, the correlation
between phase shift and percentage signal change
means that the BOLD signal is higher at a later time.
The higher the signal change, the larger the phase shift.
One possible explanation for this surprising result is
that larger vessels contribute to the higher signal
changes. If this is the case, the observed correlation
would be caused by the increased transit time of the
blood. Evidence for a delay of the BOLD response of
large draining veins with regard to that of the paren-
chyma has been found at a magnetic field of 1.5 Tesla
(5).

An alternative explanation that involves the paren-
chyma could be a partial uncoupling of metabolism and
flow right after the start of stimulation. Such effects
could be brought on by the fast response (24,25), which
could not be observed under our experimental condi-
tions. As soon as the coupling between flow and metab-
olism is recovered, areas with higher oxygen consump-
tion will respond with an increased blood flow. The
higher content of deoxyhemoglobin at the beginning of
the stimulus would induce a BOLD signal that appears
later. However, determining the reasons behind this
correlation requires further investigation. In the case of
the long stimulus, voxels with a delayed BOLD re-
sponse of lower amplitude (i.e., voxels with a positive
phase shift) could be interpreted in terms of an addi-
tional activation in extrastriate visual areas.

Because of the nonlinearity of the BOLD response,
the influence of the length of the stimulation to the
phase-amplitude correlation could be nonlinear. To ex-
plore that possibility, further data are needed to quan-
tity the dependence between the phase-amplitude cor-
relation and the length of stimulation.

In conclusion, spectral methods were applied suc-
cessfully to fMRI data obtained with varying durations
of visual stimulation. The variation of the BOLD phase
shifts was about 1 and 2 seconds for short and long
stimuli, respectively. The experiments with short and
long stimuli differed mainly in the distribution of the
activated voxels in the plane of percentage signal
change and phase shift. However, more work, including
experiments with very short visual stimuli, is necessary
to further investigate this effect.
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