5,114 research outputs found

    Effective charging energy for a regular granular metal array

    Full text link
    We study the Ambegaokar-Eckern-Sch\"{o}n (AES) model for a regular array of metallic grains coupled by tunnel junctions of conductance gg and calculate both paramagnetic and diamagnetic terms in the Kubo formula for the conductivity. We find analytically, and confirm by numerical path integral Monte Carlo methods, that for 0<g<40<g<4 the conductivity obeys an Arrhenius law σ(T)exp[E(g)/T]\sigma(T)\sim\exp[-E^{*}(g)/T] with an effective charging energy E(g)E^{*} (g) when the temperature is sufficiently low, due to a subtle cancellation between T2T^2 inelastic-cotunneling contributions in the paramagnetic and diamagnetic terms. We present numerical results for the effective charging energy and compare the results with recent theoretical analyses. We discuss the different ways in which the experimentally observed σ(T)exp[T0/T]\sigma(T)\sim\exp[-\sqrt{T_{0}/T}] law could be attributed to disorder.Comment: 5 pages, 3 figures, ReVTeX; added estimates of effective charging energies and discussion of effects of disorde

    "Exact" Algorithm for Random-Bond Ising Models in 2D

    Get PDF
    We present an efficient algorithm for calculating the properties of Ising models in two dimensions, directly in the spin basis, without the need for mapping to fermion or dimer models. The algorithm gives numerically exact results for the partition function and correlation functions at a single temperature on any planar network of N Ising spins in O(N^{3/2}) time or less. The method can handle continuous or discrete bond disorder and is especially efficient in the case of bond or site dilution, where it executes in O(L^2 ln L) time near the percolation threshold. We demonstrate its feasibility on the ferromagnetic Ising model and the +/- J random-bond Ising model (RBIM) and discuss the regime of applicability in cases of full frustration such as the Ising antiferromagnet on a triangular lattice.Comment: 4.2 pages, 5 figures, accepted for publication in Phys. Rev. Let

    Noise Predictions for STM in Systems with Local Electron Nematic Order

    Get PDF
    We propose that thermal noise in local stripe orientation should be readily detectable via STM on systems in which local stripe orientations are strongly affected by quenched disorder. Stripes, a unidirectional, nanoscale modulation of electronic charge, are strongly affected by quenched disorder in two-dimensional and quasi-two-dimensional systems. While stripe orientations tend to lock to major lattice directions, dopant disorder locally breaks rotational symmetry. In a host crystal with otherwise C4C_4 rotational symmetry, stripe orientations in the presence of quenched disorder map to the random field Ising model. While the low temperature state of such a system is generally a stripe glass in two dimensional or strongly layered systems, as the temperature is raised, stripe orientational fluctuations become more prevalent. We propose that these thermally excited fluctuations should be readily detectable in scanning tunneling spectroscopy as {\em telegraph noise} in the high voltage part of the local I(V)I(V) curves. We predict the spatial, temporal, and thermal evolution of such noise, including the circumstances under which such noise is most likely to be observed. In addition, we propose an in-situ test, amenable to any local scanning probe, for assessing whether such noise is due to correlated fluctuations rather than independent switchers.Comment: 8 pages, 8 figure

    Mystery of Excess Low Energy States in a Disordered Superconductor in a Zeeman Field

    Get PDF
    Tunneling density of states measurements of disordered superconducting (SC) Al films in high Zeeman fields reveal a significant population of subgap states which cannot be explained by standard BCS theory. We provide a natural explanation of these excess states in terms of a novel disordered Larkin-Ovchinnikov (dLO) phase that occurs near the spin-paramagnetic transition at the Chandrasekhar-Clogston critical field. The dLO superconductor is characterized by a pairing amplitude that changes sign at domain walls. These domain walls carry magnetization and support Andreev bound states, which lead to distinct spectral signatures at low energy.Comment: 5 pages, 4 figures, plus supplementary section describing methods (2 pages

    Vlasov Description Of Dense Quark Matter

    Get PDF
    We discuss properties of quark matter at finite baryon densities and zero temperature in a Vlasov approach. We use a screened interquark Richardson's potential consistent with the indications of Lattice QCD calculations. We analyze the choices of the quark masses and the parameters entering the potential which reproduce the binding energy (B.E.) of infinite nuclear matter. There is a transition from nuclear to quark matter at densities 5 times above normal nuclear matter density. The transition could be revealed from the determination of the position of the shifted meson masses in dense baryonic matter. A scaling form of the meson masses in dense matter is given.Comment: 15 pages 4 figure

    Approximate Analytical Equations for the Stirrer Angular Correlation in a Reverberation Chamber

    Get PDF
    IEEE In a reverberation chamber (RC), the angular correlation coefficient of a stirrer is an important parameter. It has been used to evaluate the performance of a stirrer or to estimate the number of independent samples in a measurement. In the previous work, the angular correlation coefficient (ACC) was evaluated numerically and no analytical equation was proposed. In this study, we propose an approximate analytical equation to fit the measured angular correlation that shows good agreements with measurement results. General properties of ACC are explored with physical insights; the equivalency of the mean value of the angular correlation and the KK-factor is revealed. This study provides further understandings on the control of the stirrer angular correlation and the KK-factor in an RC
    corecore