
 1 

  
Abstract—In a reverberation chamber, the angular correlation 

coefficient of a stirrer is an important parameter. It has been used 
to evaluate the performance of a stirrer or to estimate the number 
of independent samples in a measurement. In the previous work, 
the angular correlation coefficient was evaluated numerically and 
no analytical equation has been proposed. In this study we 
propose an approximate analytical equation to fit the measured 
angular correlation which shows good agreements with 
measurement results. General properties of angular correlation 
coefficient are explored with physical insights, the equivalency of 
the mean value of the angular correlation and the K-factor is 
revealed. This study provides further understandings on the 
control of the stirrer angular correlation and the K-factor in a 
reverberation chamber.  
 

Index Terms—Reverberation chamber, K-factor, independent 
positions, stirrer angular correlation. 
 

I. INTRODUCTION 

reverberation chamber (RC) is a highly resonant 
electrically large cavity with mechanical stirrers used to 

stir the electromagnetic field inside it [1]. Recently, it has been 
used for emulating the multipath channel experienced by 
communication systems, especially for the next generation 
mobile communication systems (5G) [2-6]. 

One of the challenging problems in RC measurements is to 
control the statistical environment in an expected way. Over the 
years, typical parameters such as Q factor [7-12], power delay 
profile (PDP) [13, 14], Rician K-factor [15-21] and absorption 
cross section (ACS) [22-25] have been investigated and 
analytical expressions have been explored to provide 
understandings and guidelines to control these variables. The Q 
factor and the PDP can be tuned by loading the RC using radio 
absorbing materials (RAMs), while the K-factor can be tuned 
by using both antennas and the RAMs. The relationships 
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between the Q factor and the ACS of the RAM [1], the K-factor 
and the radiation pattern of the antenna (including Q factor) [1] 
have already been obtained. 

Although not all parameters in an RC have analytical forms, 
analytical expressions provide physical insights and help to 
understand and control the parameters in an RC. The angular 
correlation coefficient (ACC) is an important parameter to 
characterize the correlation between different channel 
realizations in an RC, it can also be used to calculate the 
number of independent samples of a mechanical stirrer [26-32]. 
Correlation matrix method has been used to evaluate the 
number of independent stirrer positions [30-32]. In this study, 
we propose an approximate analytical expression for the ACC 
measurement which was often characterized numerically. 
Some general properties for the ACC are also derived, 
especially the relationship between the ACC and the K-factor. 

This study is organized as follows: Section II gives the 
definition of the ACC; measurement results and the proposed 
analytical expression are detailed in Section III. Section IV 
discusses the general properties of the ACC and links it to the 
average K-factor in an RC; discussion and conclusions are 
summarized in Section V. 

II. DEFINITION OF THE ANGULAR CORRELATION COEFFICIENT 

A schematic plot of an RC is illustrated in Fig. 1. Ant 1 and 
Ant 2 are antennas connected to port 1 and port 2 of a vector 
network analyzer (VNA) respectively; two stirrers are driven 
by stepper motors which are controlled by a motor controller 
through a computer. The computer acquires the measured 
S-parameters from the VNA for different stirrer positions. 

 

 
Fig. 1.  Schematic plot of a typical RC measurement scenario. 

 
Suppose the measured ܵଶଵ(ߠ, ݂) is a complex function of the 

rotation angle ߠ  of a stirrer and frequency ݂ , the ACC 
(autocorrelation) is defined as [33-35] 
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,ߠ߲)ܴ  ݂) = ׬ ܵଶଵ∗ ,ߠ) ݂)ܵଶଵ(ߠ + ,ߠ߲ ஶିஶߠ݀(݂ 									(1)	        
 
where * means the complex conjugate, ߲ߠ is the variable of the 
angular correlation. Without loss of generality, the upper and 
lower bound of the integral are written as ∞  and −∞ 
respectively. Equation (1) is not limited to a rotated stirrer, it 
can also be applied to a sliding stirrer with variable distance ߲ݔ 
(e.g. replacing ߲ߠ  with ߲ݔ ). We can set ܵଶଵ = 0  when ߠ  is 
outside the defined angular range [0, 360°] thus a rotated stirrer 
is treated the same as a sliding stirrer mathematically. In 
practice, the frequency stir can be applied to increase the 
sample number by smoothing the ACC over a certain frequency 
band. The average ACC can be obtained as ܴ௔௩௚(߲ߠ, ݂) ,ߠ߲)ܴ〉= ݂)〉௙ , where 〈∙〉௙  means averaging over a certain 
bandwidth. 

III. MEASUREMENTS 

To measure the ACC of a stirrer, we rotated the vertical 
stirrer (V-stirrer) with a very fine rotation angle of 0.2 
degrees/stirrer-step while keeping the horizontal stirrer 
(H-stirrer) standstill. The stirrers were driven by stepper motors 
with 6400 motor-steps/degree, which means 1280 motor-steps 
were triggered for a 0.2-degree stirrer rotation. S-parameters 
(ܵଶଵ ) of 1800 stirrer-steps were recorded for a 360-degree 
rotation. For each stirrer position, 16001 frequency points were 
measured in the frequency range of 10 MHz to 40 GHz (the full 
bandwidth of the VNA). Figure 2 shows the measurement 
scenario, Ant 1 and Ant 2 are wideband dipole antennas with 
return loss larger than 3 dB between 1 GHz and 40 GHz. Figure 
3 shows the measured ܵଶଵ  for one stirrer position in the 
frequency range of 10 MHz ~ 40 GHz, and the measured ܵଶଵ 
are at least 20 dB above the noise floor of the vector network 
analyzer (VNA) in 200 MHz ~ 40 GHz. 

 

      

 
Fig. 2.  Measurement scenario in an RC, the RC dimensions are 1.2 m (L) × 1.2 
m (H) × 0.8 m (W), the lowest usable frequency is about 1 GHz. The diameter 
of the V-stirrer is 40 cm and the height is 1 m, the diameter of the H-stirrer is 20 
cm and the length is 50 cm. The antennas are wideband dipole antennas shown 
in the right-hand side. 

 

 
Fig. 3.  The measured ܵଶଵ at one stirrer position. 

 

Using the measured ܵଶଵ , the normalized average ACC ܴ௡௔௩௚(߲ߠ, ݂) can be obtained by normalizing  ܴ௔௩௚(߲ߠ, ݂) to 
the peak values. The frequency stirring technique is applied to 
obtain ܴ௡௔௩௚(߲ߠ, ݂) , at each frequency of ܴ௔௩௚(߲ߠ, ݂) , the 
ACCs in a bandwidth of 200 MHz (i.e. ݂ ± 100	MHz) are used 
to obtain the average value, finally ܴ௔௩௚(߲ߠ, ݂) is normalized 
to the peak value to obtain  ܴ௡௔௩௚(߲ߠ, ݂) . The magnitude 
(Fig. 4(a)) and phase (Fig. 4(b)) of ܴ௡௔௩௚(߲ߠ, ݂)  are 
represented using the pseudo colors.  

From Fig. 4(b), it is interesting to note that the phase of the 
ACC is nearly zero for correlated ߲ߠ , thus the real part of  ܴ௡௔௩௚ dominates its value. This is because there is no phase 
biased for the ACC for different frequencies. When the 
frequency stir is applied, the random phases cancel each other 
and provide an unbiased value of zero degree. 

 

 
(a) 

 
(b) 

Fig.4.  Measured ܴ௡௔௩௚(߲ߠ, ݂)  at different frequencies, (a) magnitude หܴ௡௔௩௚(߲ߠ, ݂)ห and (b) phase (ห∠ܴ௡௔௩௚(߲ߠ, ݂)ห) are represented using pseudo 
colors. Note that the V-stirrer was rotated while the H-stirrer was standstill. 

 
Different from the ACC, the analytical form of the frequency 

correlation coefficient has already been obtained in [13] 
 |〈ܴ(߲݂)〉௠|௡௢௥௠ = 1ඥ1 + ଶ(ோ஼߲݂߬ߨ2) 													(2) 
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where 〈∙〉௠  means averaging over different stirrer positions 
(mechanical stir), ݊݉ݎ݋  means the frequency correlation is 
normalized to the peak value, ߬ோ஼  is the chamber decay 
constant, and ߲݂ is the variable of frequency correlation. Note 
that (2) can be derived analytically by using Wiener-Khinchin 
theorem from the time domain response of the RC [13, 36-37], 
as the power delay profile (PDP) in an RC has an analytical 
form of ଴ܲ݁ି௧/ఛೃ಴  where ଴ܲ  is the PDP level when ݐ = 0 . 
Inspired from (2), we propose a closed-form expression for the 
ACC 

 ܴ௡௔௩௚(߲ߠ, ݂) = 1ඥ1 + ଶ[ߠ߲(݂)ߙ] 																(3) 
 
where ߙ(݂) in (1/deg) is a function of frequency which controls 
the correlation angle of ܴ௡௔௩௚.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.  Measured and fitted ܴ௡௔௩௚(߲ߠ, ݂) at different frequencies, (a) ݂ = 1 
GHz, (b) ݂ = 3 GHz, (c) ݂ = 10 GHz, and (d) ݂ = 40 GHz. 
 

To obtain the model in (3), the least-squares fitting method is 
applied to calculate ߙ(݂) at each frequency to minimize the 
error between the analytical expression and the measured 
results. Because (3) is an approximated expression, it cannot fit 
the measured ACC perfectly in the whole range of ߲ߠ (from 

−180° to 180°). However, for small angles of ߲(3) ,ߠ is a very 
good approximation. We use a threshold value of 1/݁ ≈ 0.37 
[26], and the least-squares fit is applied in the range of ܴ௡௔௩௚ > 0.37. For large angles of ߲ߠ, the correlation could be 
related to the shape of the stirrer and no simple analytical form 
could be obtained. Nevertheless, (3) can be regarded as a low 
order approximation for small ߲ߠ . Figure 5(a)-(d) give the 
fitted results at 1 GHz, 3 GHz, 10 GHz and 40 GHz, 
respectively.  

To estimate the accuracy, we compare the correlated angle 
obtained from the measured results and the analytical equation 
(analytical form in (3)), a threshold of 1/݁ is used. Figure 6 
illustrates the fitted ߙ(݂) and the difference of the correlated 
angle ∆ߠ obtained numerically and analytically. As can be seen, 
a very good agreement is obtained and the difference is less 
than 0.2 degrees at 40 GHz. The obtained analytical model is 
plotted in Fig. 7 which shows a very good agreement with 
Fig. 4(a). 
 

 
Fig. 6.  ߙ(݂) and ∆ߠ error in the measured frequency band, the V-stirrer was 
rotated. ߙ(݂) = 9.76 × 10ିଶ݂ + 9.72 × 10ିସ݂ଶ, ݂ in GHz. 

 

 
Fig. 7.  Fitted ܴ௡௔௩௚(߲ߠ, ݂) at different frequencies, the V-stirrer was rotated 
and the H-stirrer was still. 
 

 
Fig. 8.  Measured ܴ௡௔௩௚(߲ߠ, ݂)  at different frequencies, the H-stirrer was 
rotated and the V-stirrer was still. 
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Fig. 9.  ߙ(݂) and ∆ߠ error in the measured frequency band, the H-stirrer was 
rotated with a still V-stirrer; a threshold value of ܴ௡௔௩௚ = 0.6 was used to 
calculate the correlated angle. ߙ(݂) = 3.17 × 10ିଶ݂ + 3.06 × 10ିହ݂ଶ , ݂  in 
GHz. 
 

We also repeated the measurement for a rotating H-stirrer 
with a standstill V-stirrer. The measured ACC is illustrated in 
Fig. 8, and the fitted ߙ(݂) is shown in Fig. 9 together with the 
error of ∆ߠ. Because the horizontal stirrer is smaller than the 
vertical one, a larger ACC is observed with color spread in ߲ߠ-axis in Fig. 8, and a smaller ߙ(݂) is obtained compared 
with ߙ(݂)  in Fig. 6. ߙ(݂)  are also fitted using polynomials 
which show a nearly linear dependency with frequency at low 
frequencies. 

IV. PROPERTIES OF AVERAGE ANGULAR CORRELATION 

We have used a low order analytical expression to fit the 
ACC, and good agreements have been obtained for small 
angles. However, more properties can be obtained from (1). 

A. Property I 

When ߲ߠ = 0,  
 ܴ(0, ݂) = ׬ ܵଶଵ∗ ,ߠ) ݂)ܵଶଵ(ߠ, ஶିஶߠ݀(݂   = ׬ |ܵଶଵ(ߠ, ݂)|ଶ݀ߠ஀଴ = Θ〈|ܵଶଵ(݂)|ଶ〉௠												(4)  

 
where 〈∙〉௠ means the average over different stirrer states and ܵଶଵ is defined over the angular range of [0, Θ]. As can be seen 
in (4), 〈|ܵଶଵ(݂)|ଶ〉௠ is actually the chamber transfer function 
(including the insertion loss of antennas). 

B. Property II 

At each frequency, if we apply the Fourier transform to ܵଶଵ(ߠ) 
(ߩ)ݏ  = ℱିଵ[ܵଶଵ∗ [(ߠ) = න ܵଶଵ∗ ஶߠ௝ଶగఘఏ݀݁(ߠ)

ିஶ  

= ℱ[ܵଶଵ(ߠ)]∗ = ቈන ܵଶଵ(ߠ)݁ି௝ଶగఘఏ݀ߠஶ
ିஶ ቉∗ 				(5)	 

 
where ℱ  means the Fourier transform, ߩ  is the transformed 
variable of ߠ  and ݏ  is the transformed ܵଶଵ . By applying the 
Wiener-Khinchin theorem [13, 36-37] we have 
ଶ|(ߩ)ݏ|  = |ℱ[ܵଶଵ(ߠ)]|ଶ = ℱିଵ[ܴ(߲ߠ)]										(6) 
 
When ߩ = 0, (6) becomes 
 

|ℱ[ܵଶଵ(ߠ)]|ଶఘୀ଴ = ቤන ܵଶଵ(ߠ)݁ି௝ଶగఏఘ݀ߠஶ
ିஶ ቤఘୀ଴ଶ = 

ℱିଵ[ܴ(߲ߠ)]ఘୀ଴ = න ஶߠ௝ଶగడఏఘ߲݀݁(ߠ߲)ܴ
ିஶ ቤఘୀ଴ 								(7) 

 
Simplify (7), and note ܵଶଵ is defined in the range of ߠ ∈ [0, Θ], 
we have 

 ቤන ܵଶଵ(ߠ)݀ߠ஀
଴ ቤଶ = Θଶ|〈ܵଶଵ(ߠ)〉௠|ଶ = න ஶߠ߲݀(ߠ߲)ܴ

ିஶ 		(8) 
 
Note that the Rician K-factor is defined as [15-21] 
ܭ  = |〈ܵଶଵ〉௠|ଶ〈หܵଶଵ,௦หଶ〉௠ = |〈ܵଶଵ〉௠|ଶ〈|ܵଶଵ − 〈ܵଶଵ〉௠|ଶ〉௠ 							(9) 
 
where ܵଶଵ,௦ = ܵଶଵ − 〈ܵଶଵ〉௠  is the stirrer part of the 
S-parameters. When the unstirred part is small 
ܭ  ≈ |〈ܵଶଵ〉௠|ଶ〈|ܵଶଵ|ଶ〉௠ 																															(10) 
 
Because 〈|ܵଶଵ|ଶ〉௠ = ܴ(0) varies slowly with frequency, from 
(4), (8) and (10), the mean value (over all angles) of the 
normalized ACC becomes 
 തܴ௡௢௥௠(߲ߠ) = 12Θන (0)ܴ(ߠ߲)ܴ ஀ߠ߲݀

ି஀  = Θଶ|〈ܵଶଵ(ߠ)〉௠|ଶ2Θଶ〈|ܵଶଵ(ߠ)|ଶ〉௠ ≈ 2ܭ 													(11) 
 
where തܴ௡௢௥௠(߲ߠ) represents the mean value of the normalized 
ACC.  

Interestingly, the mean value of the normalized ܴ is half of 
the K-factor. This proves the equivalency of the K-factor and 
the normalized ACC, also if the average normalized ACC is 
used we have  
 തܴ௡௔௩௚(߲ߠ) ≈ ௙2〈ܭ〉 																										(12) 
 
for K-factors, where തܴ௡௔௩௚(߲ߠ) represents the mean value of 
the normalized ACC averaged over frequency, and 〈ܭ〉௙ means 
K-factor averaging over frequency. Also note when the 
K-factor is small, we have 〈ܭ〉௙ = ACS௔௟௟ (ACS௔௟௟ + TSCS)⁄ , 
where ACS௔௟௟ is the equivalent ACS for all the loss in the RC 
and the TSCS is measured total scattering cross section of the 
stirrer in the RC [37]. തܴ௡௔௩௚(߲ߠ) can be linked to the intrinsic 
properties of the RC in a similar way (with a factor of 1/2). 
 



 5 

 
(a) 

 
(b) 

Fig. 10.  Equation (9), (10), and (11) are used to calculate the K-factor, 
19.9 GHz ~ 20.1 GHz is zoomed in; (a) the V-stirrer is rotated with a still 
H-stirrer; (b) the H-stirrer is rotated with a still V-stirrer. 
 

Equation (11) is verified in Fig. 10, the K-factors are 
calculated using both (9) and (10) for the V- and H-stirrers. As 
can be seen, because the V-stirrer is larger than the H-stirrer, 
this leads to small K-factors, and the difference between (9) and 
(10) is ignorable. For the small H-stirrer, the unstirred part is 
significant, thus a clear difference is observed between (9) and 
(10) for large K-factors. However, because (11) is derived using 
(10), good agreements between (11) and (10) are obtained for 
both V-and H-stirrers. 

C. Property III 

In some references [1, 29, 38], at each frequency, the 
autocorrelation is defined as 

 ܴ଴(߲ߠ) = ׬ [ܵଶଵ∗ (ߠ) − 〈ܵଶଵ∗ ߠ)ଶଵܵ][〈(ߠ) + (ߠ߲ −ஶିஶ〈ܵଶଵ(ߠ +   (13)																																				ߠ݀[〈(ߠ߲
 
where the mean value of ܵଶଵ(ߠ) is deducted and we use ܴ଴ to 
represent the autocorrelation of ܵଶଵ with zero means. It would 
be necessary to compare these two definitions in (1) and (13). 
We can find that definitions in (1) and (13) can be related using 
K-factor. If we expand (13), we have 
 ܴ଴(߲ߠ) = න ܵଶଵ∗ ߠ)ଶଵܵ(ߠ) + ߠ݀(ߠ߲ − |〈ܵଶଵ(ߠ)〉௠|ଶΘஶ

ିஶ  = (ߠ߲)ܴ − |〈ܵଶଵ(ߠ)〉௠|ଶΘ																										(14) 
 
After normalization, (14) becomes 
 ܴ଴௡௢௥௠(߲ߠ) = ܴ଴(߲ߠ)ܴ଴(0) = (ߠ߲)ܴ − |〈ܵଶଵ(ߠ)〉௠|ଶΘܴ(0) − |〈ܵଶଵ(ߠ)〉௠|ଶΘ 				(15) 
 
Substituting (4) into (15) and applying (10) for small K-factors, 
we have 

 

ܴ଴௡௢௥௠(߲ߠ) = (0)ܴ(ߠ߲)ܴ − |〈ܵଶଵ(ߠ)〉௠|ଶ〈|ܵଶଵ(݂)|ଶ〉௠1 − |〈ܵଶଵ(ߠ)〉௠|ଶ〈|ܵଶଵ(݂)|ଶ〉௠  

≈ ܴ௡௢௥௠(߲ߠ) − 1ܭ − ܭ 																									(16) 
 
where ܴ௡௢௥௠(߲ߠ)  is the normalized ܴ(߲ߠ) . From (16), the 
relationship between definitions in (1) and (13) is clear. The 
measured normalized ACC at 40 GHz is used to verify (16); the 
left-hand side and the right-hand side of (16) for the H-stirrer 
and the V-stirrer are illustrated in Fig. 11. As expected, they 
agree well. 
 

 
Fig. 11.  Measured normalized ACC in (16) at 40 GHz for H- and V-stirrer, the 
left-hand side and the right-hand side of (16) are compared, the K-factors are 
-14.8 dB and -10.6 dB for the H- and V-stirrer respectively. 

V. DISCUSSION AND CONCLUSIONS 

To investigate the angular correlation of a mechanical stirrer, 
a very fine stirrer rotation angle has been used (0.2 
degrees/stirrer-step). The measurement time was relatively 
long, which took about 10 hours for a whole rotation (1800 
stirrer-steps). 

An analytical expression has been proposed to fit ACC which 
shows good agreements with measurement results for small 
angles. The proposed analytical expression compresses the 
measurement data: conventionally, the ACC needs to be 
characterized as a function of both ߲ߠ  and ݂ , but now one 
analytical expression is enough. The fitted ߙ(݂) characterizes 
the ACC for different frequencies with very small errors. Some 
general properties of the ACC have been detailed; an 
interesting finding is that the mean value of the normalized 
ACC equals a half of the K-factor, which proves the 
equivalency of the mean angular correlation and the K-factor. 
Different definitions for the autocorrelation have also been 
compared and related by using the K-factor. 

We also note that the approximate form for (3) could not be 
unique, an alternative approximate form proposed in [39] for 
the correlation (for the temperature fluctuation in the ocean) in 
distance ݔ is 

(ݔ)ܴ  = ݁ି௫మ/௔మ																														(17) 
 
If we check the Taylor series for (3) and (17), and let ܽ =  ,ߙ/2√
we have 
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 1ඥ1 + ଶ(ݔߙ) = 1 − 12 ଶ(ݔߙ) + 38 ସ(ݔߙ) +  (18)						(଺ݔ)ܱ
 ݁ି௫మ/௔మ = 1 − 12 ଶ(ݔߙ) + 18 ସ(ݔߙ) +  (19)						(଺ݔ)ܱ
 
The difference between (18) and (19) is on the order of (ݔߙ)ସ/4 , which is very small in the correlated region (by 
replacing ݔ with ߲ߠ). Another form proposed in [39] is ݁ି|௫|/௔, 
but the derivative of this expression for ݔ = 0 is not zero, thus 
it is not suitable for this application.  

If we check (12) carefully, an interesting phenomenon can be 
observed. Because the integral of ܴ௡௔௩௚ over all the angles is a 
finite value (Θ〈ܭ〉௙ in (12)), while the correlated angle drops 
down very quickly for small ߲ߠ, thus the contribution of the 

integral ׬ ܴ௡௔௩௚஀ି஀ ߠ߲݀  is mainly from a large ߲ߠ . Fig. 12 
shows the measured ܴ௡௔௩௚  at 40 GHz for two stirrers. It is 
interesting to note that although the ACC drops quickly from 
the peak value, Θ〈ܭ〉௙ is a finite number, thus it is impossible to 
have a curve of ܴ௡௔௩௚ with both a sharp roll-off and nearly zero 
correlations for a large ߲ߠ. This phenomenon was not noticed 
before, and the correlation drops down slowly for large ߲ߠ. 
This effect is very significant at high frequencies because the 

contribution to ׬ ܴ௡௔௩௚஀ି஀ ߠ߲݀  from the tip of the curve (in 
Fig. 12) is very small. 

 

 
Fig. 12.  Measured average normalized ACC at 40 GHz for the rotated H-stirrer 
and V-stirrer. ߲ߠ  in the range of [−180°, 180°]  is shown to have a 
understanding of ܴ௡௔௩௚ for a large ߲ߠ. 
 

From this study, a parameter (average Rician K-factor) in 
communication channel emulation is well linked to a physical 
quantity (ACC) in an RC. By applying this relationship, we can 
emulate communication channels in an RC using a small stirrer 
to create controlled correlated channels or measure the average 
K-factors using the average ACC of a rotating stirrer. 
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