5,757 research outputs found

    Assessment of synchrony in multiple neural spike trains using loglinear point process models

    Full text link
    Neural spike trains, which are sequences of very brief jumps in voltage across the cell membrane, were one of the motivating applications for the development of point process methodology. Early work required the assumption of stationarity, but contemporary experiments often use time-varying stimuli and produce time-varying neural responses. More recently, many statistical methods have been developed for nonstationary neural point process data. There has also been much interest in identifying synchrony, meaning events across two or more neurons that are nearly simultaneous at the time scale of the recordings. A natural statistical approach is to discretize time, using short time bins, and to introduce loglinear models for dependency among neurons, but previous use of loglinear modeling technology has assumed stationarity. We introduce a succinct yet powerful class of time-varying loglinear models by (a) allowing individual-neuron effects (main effects) to involve time-varying intensities; (b) also allowing the individual-neuron effects to involve autocovariation effects (history effects) due to past spiking, (c) assuming excess synchrony effects (interaction effects) do not depend on history, and (d) assuming all effects vary smoothly across time.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS429 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Nature of the H2-Emitting Gas in the Crab Nebula

    Get PDF
    Understanding how molecules and dust might have formed within a rapidly expanding young supernova remnant is important because of the obvious application to vigorous supernova activity at very high redshift. In previous papers, we found that the H2 emission is often quite strong, correlates with optical low-ionization emission lines, and has a surprisingly high excitation temperature. Here we study Knot 51, a representative, bright example, for which we have available long slit optical and NIR spectra covering emission lines from ionized, neutral, and molecular gas, as well as HST visible and SOAR Telescope NIR narrow-band images. We present a series of CLOUDY simulations to probe the excitation mechanisms, formation processes and dust content in environments that can produce the observed H2 emission. We do not try for an exact match between model and observations given Knot 51's ambiguous geometry. Rather, we aim to explain how the bright H2 emission lines can be formed from within the volume of Knot 51 that also produces the observed optical emission from ionized and neutral gas. Our models that are powered only by the Crab's synchrotron radiation are ruled out because they cannot reproduce the strong, thermal H2 emission. The simulations that come closest to fitting the observations have the core of Knot 51 almost entirely atomic with the H2 emission coming from just a trace molecular component, and in which there is extra heating. In this unusual environment, H2 forms primarily by associative detachment rather than grain catalysis. In this picture, the 55 H2-emitting cores that we have previously catalogued in the Crab have a total mass of about 0.1 M_sun, which is about 5% of the total mass of the system of filaments. We also explore the effect of varying the dust abundance. We discuss possible future observations that could further elucidate the nature of these H2 knots.Comment: 51 pages, 15 figures, accepted for publication in MNRAS, revised Figure 12 results unchange

    Vlasov Description Of Dense Quark Matter

    Get PDF
    We discuss properties of quark matter at finite baryon densities and zero temperature in a Vlasov approach. We use a screened interquark Richardson's potential consistent with the indications of Lattice QCD calculations. We analyze the choices of the quark masses and the parameters entering the potential which reproduce the binding energy (B.E.) of infinite nuclear matter. There is a transition from nuclear to quark matter at densities 5 times above normal nuclear matter density. The transition could be revealed from the determination of the position of the shifted meson masses in dense baryonic matter. A scaling form of the meson masses in dense matter is given.Comment: 15 pages 4 figure

    A Time-Accurate Upwind Unstructured Finite Volume Method for Compressible Flow with Cure of Pathological Behaviors

    Get PDF
    A time-accurate, upwind, finite volume method for computing compressible flows on unstructured grids is presented. The method is second order accurate in space and time and yields high resolution in the presence of discontinuities. For efficiency, the Roe approximate Riemann solver with an entropy correction is employed. In the basic Euler/Navier-Stokes scheme, many concepts of high order upwind schemes are adopted: the surface flux integrals are carefully treated, a Cauchy-Kowalewski time-stepping scheme is used in the time-marching stage, and a multidimensional limiter is applied in the reconstruction stage. However even with these up-to-date improvements, the basic upwind scheme is still plagued by the so-called "pathological behaviors," e.g., the carbuncle phenomenon, the expansion shock, etc. A solution to these limitations is presented which uses a very simple dissipation model while still preserving second order accuracy. This scheme is referred to as the enhanced time-accurate upwind (ETAU) scheme in this paper. The unstructured grid capability renders flexibility for use in complex geometry; and the present ETAU Euler/Navier-Stokes scheme is capable of handling a broad spectrum of flow regimes from high supersonic to subsonic at very low Mach number, appropriate for both CFD (computational fluid dynamics) and CAA (computational aeroacoustics). Numerous examples are included to demonstrate the robustness of the methods

    CONGENITAL ATLANTO-AXIAL DISLOCATION

    Get PDF
    Atlanto-axial dislocation IS an uncommon condition. It is usually secondary to trauma, infection (tuberculous and non-tuberculous atlas and axis) and rheumatoid arthritis. Othe

    A Survey of Molecular Hydrogen in the Crab Nebula

    Get PDF
    We have carried out a near-infrared, narrow-band imaging survey of the Crab Nebula, in the H2 2.12 micron and Br-gamma 2.17 micron lines, using the Spartan Infrared camera on the SOAR Telescope. Over a 2.8' x 5.1' area that encompasses about 2/3 of the full visible extent of the Crab, we detect 55 knots that emit strongly in the H2 line. We catalog the observed properties of these knots. We show that they are in or next to the filaments that are seen in optical-passband emission lines. Comparison to HST [S II] and [O III] images shows that the H2 knots are strongly associated with compact regions of low-ionization gas. We also find evidence of many additional, fainter H2 features, both discrete knots and long streamers following gas that emits strongly in [S II]. A pixel-by-pixel analysis shows that about 6 percent of the Crab's projected surface area has significant H2 emission that correlates with [S II] emission. We measured radial velocities of the [S II] lambda6716 emission lines from 47 of the cataloged knots and find that most are on the far (receding) side of the nebula. We also detect Br-gamma emission. It is right at the limit of our survey, and our Br-gamma filter cuts off part of the expected velocity range. But clearly the Br-gamma emission has a quite different morphology than the H2 knots, following the long linear filaments that are seen in H-alpha and in [O III] optical emission lines.Comment: Accepted for publication in the ApJ

    Near-Field Noise Computation for a Subsonic Coannular Jet

    Get PDF
    A high-Reynolds-number, subsonic coannular jet is simulated, using a three-dimensional finite-volume LES method, with emphasis on the near field noise. The nozzle geometry used is the NASA Glenn 3BB baseline model. The numerical results are generally in good agreement with existing experimental findings

    Zone Determinant Expansions for Nuclear Lattice Simulations

    Full text link
    We introduce a new approximation to nucleon matrix determinants that is physically motivated by chiral effective theory. The method involves breaking the lattice into spatial zones and expanding the determinant in powers of the boundary hopping parameter.Comment: 20 pages, 6 figures, revtex4 (version to appear in PRC

    Finite-Temperature Monte Carlo Calculations For Systems With Fermions

    Full text link
    We present a quantum Monte Carlo method which allows calculations on many-fermion systems at finite temperatures without any sign decay. This enables simulations of the grand-canonical ensemble at large system sizes and low temperatures. Both diagonal and off-diagonal expectations can be computed straightforwardly. The sign decay is eliminated by a constraint on the fermion determinant. The algorithm is approximate. Tests on the Hubbard model show that accurate results on the energy and correlation functions can be obtained.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let
    corecore