250 research outputs found

    Who is that? Brain networks and mechanisms for identifying individuals

    Get PDF
    Social animals can identify conspecifics by many forms of sensory input. However, whether the neuronal computations that support this ability to identify individuals rely on modality-independent convergence or involve ongoing synergistic interactions along the multiple sensory streams remains controversial. Direct neuronal measurements at relevant brain sites could address such questions, but this requires better bridging the work in humans and animal models. Here, we overview recent studies in nonhuman primates on voice and face identity-sensitive pathways and evaluate the correspondences to relevant findings in humans. This synthesis provides insights into converging sensory streams in the primate anterior temporal lobe (ATL) for identity processing. Furthermore, we advance a model and suggest how alternative neuronal mechanisms could be tested

    Building a Statistical Model for Predicting Cancer Genes

    Get PDF
    More than 400 cancer genes have been identified in the human genome. The list is not yet complete. Statistical models predicting cancer genes may help with identification of novel cancer gene candidates. We used known prostate cancer (PCa) genes (identified through KnowledgeNet) as a training set to build a binary logistic regression model identifying PCa genes. Internal and external validation of the model was conducted using a validation set (also from KnowledgeNet), permutations, and external data on genes with recurrent prostate tumor mutations. We evaluated a set of 33 gene characteristics as predictors. Sixteen of the original 33 predictors were significant in the model. We found that a typical PCa gene is a prostate-specific transcription factor, kinase, or phosphatase with high interindividual variance of the expression level in adjacent normal prostate tissue and differential expression between normal prostate tissue and primary tumor. PCa genes are likely to have an antiapoptotic effect and to play a role in cell proliferation, angiogenesis, and cell adhesion. Their proteins are likely to be ubiquitinated or sumoylated but not acetylated. A number of novel PCa candidates have been proposed. Functional annotations of novel candidates identified antiapoptosis, regulation of cell proliferation, positive regulation of kinase activity, positive regulation of transferase activity, angiogenesis, positive regulation of cell division, and cell adhesion as top functions. We provide the list of the top 200 predicted PCa genes, which can be used as candidates for experimental validation. The model may be modified to predict genes for other cancer sites

    Modified Logistic Regression Models Using Gene Coexpression and Clinical Features to Predict Prostate Cancer Progression

    Get PDF
    Predicting disease progression is one of the most challenging problems in prostate cancer research. Adding gene expression data to prediction models that are based on clinical features has been proposed to improve accuracy. In the current study, we applied a logistic regression (LR) model combining clinical features and gene co-expression data to improve the accuracy of the prediction of prostate cancer progression. The top-scoring pair (TSP) method was used to select genes for the model. The proposed models not only preserved the basic properties of the TSP algorithm but also incorporated the clinical features into the prognostic models. Based on the statistical inference with the iterative cross validation, we demonstrated that prediction LR models that included genes selected by the TSP method provided better predictions of prostate cancer progression than those using clinical variables only and/or those that included genes selected by the one-gene-at-a-time approach. Thus, we conclude that TSP selection is a useful tool for feature (and/or gene) selection to use in prognostic models and our model also provides an alternative for predicting prostate cancer progression

    Changes in serum proteomic patterns by presurgical alpha-tocopherol and L-selenomethionine supplementation in prostate cancer

    Get PDF
    BACKGROUND: Evidence of the chemopreventive effects of the dietary antioxidants alpha-tocopherol (vitamin E) and l-selenomethionine (selenium) comes from secondary analysis of two phase III clinical trials that found treatment with these antioxidants reduced the incidence of prostate cancer. To determine the effects of selenium and vitamin E in blood and prostate tissue, we undertook a preoperative feasibility study complementary to the currently ongoing Selenium and Vitamin E Cancer Prevention Trial. METHODS: Forty-eight patients with clinically localized prostate cancer enrolled on this 2 x 2 factorial design study were randomized to take selenium, vitamin E, both, or placebo for 3 to 6 weeks before prostatectomy. Sera were collected from patients before and after dietary supplementation. Thirty-nine patients were evaluable, and 29 age-matched disease-free men served as controls. Mass profiling of lipophilic serum proteins of lower molecular weight (2-13.5 kDa) was conducted, and mass spectra data were analyzed using custom-designed software. RESULTS: Weighted voting analyses showed a change in sera classification from cancerous to healthy for some patients with prostate cancer after dietary intervention. ANOVA analysis showed significantly different treatment effects on prediction strength changes among the four groups at a 95% confidence level. Eliminating an outlying value and performing post hoc analysis using Fisher\u27s least significant difference method showed that effects in the group treated with the combination were significantly different from those of the other groups. CONCLUSION: In sera from patients with prostate cancer, selenium and vitamin E combined induced statistically significant proteomic pattern changes associated with prostate cancer-free status

    Subtype and Site Specific-Induced Metabolic Vulnerabilities in Prostate Cancer

    Get PDF
    Aberrant metabolic functions play a crucial role in prostate cancer progression and lethality. Currently, limited knowledge is available on subtype-specific metabolic features and their implications for treatment. We therefore investigated the metabolic determinants of the two major subtypes of castration-resistant prostate cancer [androgen receptor-expressing prostate cancer (ARPC) and aggressive variant prostate cancer (AVPC)]. Transcriptomic analyses revealed enrichment of gene sets involved in oxidative phosphorylation (OXPHOS) in ARPC tumor samples compared with AVPC. Unbiased screening of metabolic signaling pathways in patient-derived xenograft models by proteomic analyses further supported an enrichment of OXPHOS in ARPC compared with AVPC, and a skewing toward glycolysis by AVPC. In vitro, ARPC C4-2B cells depended on aerobic respiration, while AVPC PC3 cells relied more heavily on glycolysis, as further confirmed by pharmacologic interference using IACS-10759, a clinical-grade inhibitor of OXPHOS. In vivo studies confirmed IACS-10759\u27s inhibitory effects in subcutaneous and bone-localized C4-2B tumors, and no effect in subcutaneous PC3 tumors. Unexpectedly, IACS-10759 inhibited PC3 tumor growth in bone, indicating microenvironment-induced metabolic reprogramming. These results suggest that castration-resistant ARPC and AVPC exhibit different metabolic dependencies, which can further undergo metabolic reprogramming in bone

    Radium-223 Treatment Produces Prolonged Suppression of Resident Osteoblasts and Decreased Bone Mineral Density in Trabecular Bone in Osteoblast Reporter Mice

    Get PDF
    Radium 223 (Ra-223) is an α-emitting bone-homing radiopharmaceutical that targets tumor-induced osteoblasts and is used to reduce bone pain and prolong overall survival in men with bone-metastatic, castrate-resistant prostate cancer. However, increased fracture risk in skeletal sites with no bone metastasis has been observed in patients treated with Ra-223. Both luciferase- or green fluorescence protein (GFP)-labeled osteoblast reporter mice were used to monitor the effect of Ra-223 on resident osteoblasts and normal bone structure. Upon Ra-223 treatment, 70% of resident osteoblasts were reduced within 2 days, and the osteoblast reduction lasted for at least 18 weeks without detectable recovery, as measured by in vivo bioluminescent imaging. In GFP-labeled osteoblast reporter mice, Ra-223 mainly reduced osteoblasts localized in the trabecular bone areas; the osteoblasts in the growth plates were less affected. Micro-computed tomography analyses showed that Ra-223 significantly reduced bone mineral density and bone microstructure in the trabecular area of femurs but not in the cortical bone. Tumor-induced bone was generated by inoculating osteogenic TRAMP-BMP4 prostate cancer cells into the mouse femurs; Ra-223 treatment significantly reduced tumor-induced osteoblasts. Our study shows that Ra-223 affects bone structures that are not involved in bone metastasis. Strategies that improve bone health may reduce fracture risk in patients receiving Ra-223

    Tissue Effects in a Randomized Controlled Trial of Short-term Finasteride in Early Prostate Cancer.

    Get PDF
    BackgroundIn the Prostate Cancer Prevention Trial, finasteride selectively suppressed low-grade prostate cancer and significantly reduced the incidence of prostate cancer in men treated with finasteride compared with placebo. However, an apparent increase in high-grade disease was also observed among men randomized to finasteride. We aimed to determine why and hypothesized that there is a grade-dependent response to finasteride.MethodsFrom 2007 to 2012, we randomized dynamically by intranet-accessible software 183 men with localized prostate cancer to receive 5mg finasteride or placebo daily in a double-blind study during the 4-6weeks preceding prostatectomy. As the primary end point, the expression of a predefined molecular signature (ERβ, UBE2C, SRD5A2, and VEGF) differentiating high- and low-grade tumors in Gleason grade (GG) 3 areas of finasteride-exposed tumors from those in GG3 areas of placebo-exposed tumors, adjusted for Gleason score (GS) at prostatectomy, was compared. We also determined androgen receptor (AR) levels, Ki-67, and cleaved caspase 3 to evaluate the effects of finasteride on the expression of its downstream target, cell proliferation, and apoptosis, respectively. The expression of these markers was also compared across grades between and within treatment groups. Logistic regression was used to assess the expression of markers.FindingsWe found that the predetermined molecular signature did not distinguish GG3 from GG4 areas in the placebo group. However, AR expression was significantly lower in the GG4 areas of the finasteride group than in those of the placebo group. Within the finasteride group, AR expression was also lower in GG4 than in GG3 areas, but not significantly. Expression of cleaved caspase 3 was significantly increased in both GG3 and GG4 areas in the finasteride group compared to the placebo group, although it was lower in GG4 than in GG3 areas in both groups.InterpretationWe showed that finasteride's effect on apoptosis and AR expression is tumor grade dependent after short-term intervention. This may explain finasteride's selective suppression of low-grade tumors observed in the PCPT

    Endothelial-to-Osteoblast Transition in Normal Mouse Bone Development

    Get PDF
    Metastatic prostate cancer (PCa) in bone induces bone-forming lesions. We have previously shown that PCa-induced bone originates from endothelial cells (ECs) that have undergone EC-to-osteoblast (OSB) transition. Here, we investigated whether EC-to-OSB transition also occurs during normal bone formation. We developed an EC and OSB dual-color reporter mouse (DRM) model that marks EC-OSB hybrid cells with red and green fluorescent proteins. We observed EC-to-OSB transition (RFP and GFP co-expression) in both endochondral and intramembranous bone formation during embryonic development and in adults. Co-expression was confirmed in cells isolated from DRM. Bone marrow– and lung-derived ECs underwent transition to OSBs and mineralization in osteogenic medium. RNA-sequencing revealed GATA family transcription factors were upregulated in EC-OSB hybrid cells and knockdown of GATA3 inhibited BMP4-induced mineralization. Our findings support that EC-to-OSB transition occurs during normal bone development and suggest a new paradigm regarding the endothelial origin of OSBs

    Monitoring Glucocorticoid Receptor in Plasma-derived Extracellular Vesicles as a Marker of Resistance to Androgen Receptor Signaling Inhibition in Prostate Cancer

    Get PDF
    Disease progression following androgen ablation was shown to be associated with upregulation of the glucocorticoid receptor (GR). Longitudinal monitoring of GR expression in circulating extracellular vesicles (EV) may reflect changes in the tumor cell and facilitates detection of acquired resistance. We utilized LNCaP, LREX cells and a patient-derived xenograft, MDA PDX 322-2-6a, for in vitro and in vivo experiments. Plasma-derived EVs were isolated from patients with localized high-risk prostate cancer undergoing androgen ablation. The mRNA levels of GR in EVs and their responsive genes were detected by transcriptome analysis, qRT-PCR and the protein levels by Western blot analysis. We detected changes in GR expression at mRNA and protein levels in EVs derived from LNCaP and LREX cells in in vitro studies. In in vivo experiments, LNCaP and the PDX MDA 322-2-6a–bearing mice were treated with enzalutamide. GR levels in plasma-derived EVs were increased only in those tumors that did not respond to enzalutamide. Treatment of mice bearing enzalutamide-resistant tumors with a GR inhibitor in combination with enzalutamide led to a transient pause in tumor growth in a subset of tumors and decreased GR levels intracellular and in plasma-derived EVs. In a subgroup of patients with high-risk localized prostate cancer treated with androgen signaling inhibition, GR was found upregulated in matching tissue and plasma EVs. These analyses showed that GR levels in plasma-derived EVs may be used for monitoring the transition of GR expression allowing for early detection of resistance to androgen ablation treatment
    • …
    corecore