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Predicting disease progression is one of the most challenging problems in prostate cancer research. Adding gene expression data
to prediction models that are based on clinical features has been proposed to improve accuracy. In the current study, we applied a
logistic regression (LR) model combining clinical features and gene co-expression data to improve the accuracy of the prediction
of prostate cancer progression. The top-scoring pair (TSP) method was used to select genes for the model. The proposed models
not only preserved the basic properties of the TSP algorithm but also incorporated the clinical features into the prognostic models.
Based on the statistical inference with the iterative cross validation, we demonstrated that prediction LR models that included
genes selected by the TSP method provided better predictions of prostate cancer progression than those using clinical variables
only and/or those that included genes selected by the one-gene-at-a-time approach. Thus, we conclude that TSP selection is a
useful tool for feature (and/or gene) selection to use in prognostic models and our model also provides an alternative for predicting
prostate cancer progression.

1. Introduction

Prostate cancer (PCa) is the second leading cause of cancer-
related deaths among men in the USA [1, 2]. Screening
using serum prostate-specific antigen (PSA) has improved
the early detection of PCa and has resulted in an increase
in the proportion of patients with disease that is curable
by prostatectomy [3, 4]. However, 20% to 30% of treated
patients will develop a local or metastatic recurrence which
reflects the most adverse clinical outcome [4].Thus, from the
clinical perspective, it is important to be able to predict which
patients will experience a relapse.

Traditional PCa prognosis models are based on some
clinical features, such as pretreatment PSA levels, biopsy
Gleason score (GS), and clinical stage, but in practice, they are
inadequate to accurately predict disease progression [5].With
the development of microarray technology in recent years,
a number of studies have been conducted to characterize

the dynamics of gene expression in PCa progression by
using DNA microarrays. In some studies, tumor expression
signatures associated with clinical parameters and outcomes
have been identified [6–9]. As a result, it is possible to develop
the clinical models with the variables of gene signatures
identified from microarray data and some clinical features
to predict which men would experience progression to the
metastatic form of PCa.

However, it has been found that none of the predictive
models using gene expression profiles are significantly better
than models using clinical variables only in predicting PCa
progression [10, 11]. In fact, only a limited number of genes
are used to avoid overfitting in these models. The genes are
usually selected through a gene-by-gene comparison. The
results of recent studies, however, suggest that assessing the
expression of more than one gene (i.e., coexpression analysis)
yields a better prediction of tumor progression than the
analysis of individual genes does [12–15].
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In this study, we tried to propose suchmodels bymerging
the coexpressed genes’ profiles and some clinical features to
predict the patients who would suffer from PCa progression.
The genes used in our models are identified by a top-
scoring pair (TSP) algorithm. The TSP method was initially
introduced by Geman et al. as a classification technique for
microarray data [16]. We applied the TSP-based LR model
to publishedmicroarray experiments whose patients suffered
from PCa progression.We analyzed the effects of the number
of coexpressed genes included in themodels and the selection
of the clinical variables on the accuracy of the prediction. We
also compared the performance of the most commonly used
classification methods with our proposed method.

2. Materials and Methods

2.1. Logistic Regression Model for the Classification of Gene
Microarrays. Genome-wide microarray data from different
cells give insight into the gene expression variation of var-
ious genotypes and phenotypes. Classification of patients
is an important aspect of cancer diagnosis and treatment.
For example, microarray experiments can be employed to
screen gene expression levels from cancerous and normal
phenotypes so that proper prediction rules can be built from
these gene expression data. In this section, we introduce a
logistic regression (LR) model to classify the phenotypes of
microarray data.

We denote a gene expression matrix by 𝐷 = {𝑥
𝑖𝑗
}
𝑀×𝑁

,
where there are𝑀 genes and𝑁 samples, and 𝑥

𝑖𝑗
denotes the

expression value of the 𝑖th gene, 𝑖 ∈ {1, . . . ,𝑀}, from the
𝑗th sample, 𝑗 ∈ {1, . . . , 𝑁}. The vector 𝐺

𝑖⋅
= (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑁
)

represents the 𝑖 gene expression values over all𝑁 samples and
𝑆
⋅𝑗
= (𝑥
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, . . . , 𝑥
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) is the expression profile of all 𝑀 genes

for the 𝑗th sample. Let 𝑦
𝑗
be the binary phenotype of the 𝑗th

profile: 𝑦
𝑗
= 0 indicates that the 𝑗th sample belongs to class 0

(e.g., normal tissues) and 𝑦
𝑗
= 1 indicates that the 𝑗th sample

belongs to class 1 (e.g., tumor tissues).
The classification of microarray data has been intensively

researched for years. But some limitations have stood out,
such as the small-sample dilemma, “black box,” and lack
of prediction strength [16–18]. We used LR to build the
prediction models for a binary outcome. Obviously, the
underlying probability of labels and contribution of predictor
variables can be explicitly provided in LR models, which is
helpful for biologists in discovering the genes that interact
and cause the occurrence of disease.

The goal of classification with LR was to find a formula
that gives the probability 𝑝

𝑗
that the 𝑗th sample with all

its measured expressions 𝑆
⋅𝑗
represents a class 1 case. Since

only two classes are considered, the probability of the sample
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𝑗
. We used the

following normal LR model:
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For microarray experiments of typical “large 𝑝, small
𝑛,” the number of samples, 𝑁, is usually on the order of
tens, but the number of genes, 𝑀, is usually on the order
of thousands or even tens of thousands. So the number of
samples is much less than the number of variables (𝑁 ≪
𝑀). This situation presents a number of problems when
building a LR model, such as overfitting, multicollinearity of
the gene expression profiles, and infinite solutions for 𝛽

𝑖
[17–

19]. Feature selection can be used to identify the significant
genes that contribute tomost of the classification.Thus, some
dimension-reduction techniques, such as support vector
machines (SVMs), singular value decomposition, and partial
least squares, are commonly used to tackle those problems
and make the computation feasible [17–19]. However, the
featured genes are usually selected one by one. According to
the biological mechanism, genes do not work by themselves,
so we employed coexpressed TSP genes in the model, as
described in the following section.

2.2. Identification of Coexpressed Genes. Recent studies have
suggested that assessing the expression of more than one
gene (i.e., coexpression analysis) provides a better predic-
tion of tumor progression than analyzing the expression of
individual genes [20–22]. We identified the coexpressed gene
with the paired-gene approach of the top-scoring pairs (TSP)
algorithm as described by Geman et al. [16]. The TSP algo-
rithm was originally developed for the binary classification
of phenotypes according to the relative expression profiles of
one-gene pair.TheTSP classifier has the following advantages
over the standard classifiers used in gene expression studies:
(i) it is a parameter-free and data-driven machine-learning
method that avoids overfitting by eliminating the need to
perform specific parameter tuning, as in other machine-
learning techniques, such as SVMs and neural networks; (ii)
it involves only two genes, which leads to easily interpretable
data and inexpensive diagnostic tests; (iii) the rank-based
TSP classifiers are less affected by technical factors or normal-
ization than classifiers which are based on expression levels
of individual genes; and (iv) the simple and accurate results
generated by TSP facilitate follow-up studies.

TSP gene pairs may be considered biomarker genes in
a diagnostic test from microarray experiments [16, 20–22].
The methodology is being extended from one TSP gene pair
to top-scoring pair of groups (TSPG) as gene signatures
[20–22]. However, there are still some unresolved issues of
biological explanation and the selection criteria related to
the use of gene pairs instead of larger groups of significant
genes. Most of the algorithms in gene selection are based
on the distribution assumption of the gene expression data.
However, the rank-based TSP algorithm is a parameter-
free, data-driven machine-learning method. It is difficult to
determine the number of gene pairs selected, but current
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research indicates that only a few gene pairs with the top
scores need to be considered [20, 21].

For simplicity, using the gene expression matrix 𝐷 =
{𝑥
𝑖𝑗
}
𝑀×𝑁
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1
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2
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2
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where 𝐼(𝑥
𝑢𝑗
< 𝑥V𝑗) is the indicator function defined as

𝐼 (𝑥
𝑢𝑗
< 𝑥V𝑗) = {

1, 𝑥
𝑢𝑗
< 𝑥V𝑗,

0, 𝑥
𝑢𝑗
≥ 𝑥V𝑗,

𝑗 = 1, 2, . . . , 𝑁. (4)

The typical TSP method is based on maximizing the
following score of (𝑢, V) defined by German et al. [16]:

Δ
𝑢V =
𝑝𝑢V (0) − 𝑝𝑢V (1)

 . (5)

This approach has been shown to be as accurate as SVMs
and other more sophisticated methods [20–22]. Although
maximizing delta identifies the best classifier with high
accuracy, it may be associated with relatively low sensitivity
or specificity, as pointed out by German et al. and Ummanni
et al. [16, 23]. For example, in the classification of cancer
versus normal samples, accuracy is defined as the ratio
between the number of correctly predicted samples and the
total number of samples, and sensitivity (resp., specificity) is
the ratio between the number of correctly predicted cancer
(resp., normal) samples and the total number of cancer
(resp., normal) samples [16].This low sensitivity or specificity
restricts us to use the classifier of one TSP formakingmedical
decisions. This issue was improved with the use of multiple
gene pairs as the classifier, which can achieve similar scores
with high accuracy, sensitivity, and specificity [20–22]. Thus,
we considered not just one but multiple TSP gene pairs in our
models.

2.3. Evaluation of the Model Using Published Datasets. To
evaluate the efficiency of the TSP-based LRmodel, we applied
our model to datasets with both clinical parameters and gene
expression values. We selected a dataset with a large sample
size because we could obtain more reliable estimates of the
efficiency of the classifiers. The dataset was from the recently
published study of Sboner et al. [5], who analyzed gene
expression in patients with up to 30 years of clinical follow-
up data. Men who died within 10 years of being diagnosed

with PCa were considered to have “lethal” disease, and those
who survived at least 10 years after diagnosis were considered
to have “indolent” disease. There were 165 men with lethal
and 116 with indolent disease.The GS, tumor percentage, and
presence of an estrogen-regulated gene (ERG) rearrangement
were provided for each patient in the study. The expression
of 6,100 genes was assessed using a custom gene expression
array (GSE 16560).

For our model, we first randomly separated the 281
samples into a learning set with 186 samples and a validation
set with the other 95 samples, with an approximately equal
proportion of men with lethal and indolent PCa in each
group. The learning set was utilized to create the models
whose performance was evaluated in the validation set by
means of the area under the receiver operating characteristic
(ROC) curve (AUC). To compare the performance of our
model, we performed the statistical testing based on the null
hypothesis that there is no difference between the AUCs
of Sboner’s models and ours. Similar to the estimation of
AUCs in [5], the corresponding 95% confidence intervals
of the AUCs were computed in 100 iterative 10-fold cross
validation procedures that enabled an unbiased estimation of
the model’s performance since the evaluation was performed
on an independent dataset. The model is inferred to be
better only if its AUC is statistically larger than that of the
other models. In the original study, the authors conducted an
extensive comparative analysis of the most frequently used
classification methods, including the k-nearest neighbor, the
nearest template prediction, diagonal linear discriminate
analysis, SVMs, and neural network analysis. Their results
allowed us to compare the performance of the TSP-based LR
classifiers with that of the other classifiers.

To optimize and select the best models, we adopted an
iterative cross validation procedure within the learning set
that was similar to the procedure used by Sboner et al. [5].
The stratified tenfold cross validation procedure split the
learning set into 10 disjointed partitions, testi (𝑖 = 1, . . . , 10),
with approximately equal proportions of lethal and indolent
cases in each. For a given partition, testi, the models were
fitted using all the other cases in the learning set, that is,
the trainingi set and then were evaluated with AUC analysis
of testi. In the procedure of 10-fold cross validation, the
modeli (𝑖 = 1, . . . , 10)was first parameterized in the trainingi
sets and then the corresponding AUC ontesti (𝑖 = 1, . . . , 10)
sets were calculated from modeli. To avoid potential biases
in the selection of the 10 partitions, the entire procedure
was repeated 100 times, for 1,000 different partitions. We
identified the best model with the largest AUC by comparing
them as obtained in the 100 iterations. Furthermore, the
featured gene pairs and estimated parameters in the model
were also considered as the best model in learning set. The
rationale was that the results of this procedure enable the
identification of the best model, which can then be used to
build a classifier that was finally evaluated on the validation
set.

During the iterations of our cross validation procedure,
the feature-selection procedurewas carried out to identify the
subsets of genes that are expressed differently in the lethal and
indolent samples. In the study by Sboner et al. [5], a two-sided
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Table 1: Logistic regression models that included TSP-selected gene pairs and different combinations of clinical variables.

Model number Patient’s age Gleason score Tumor percentage Fusion ERG arrangement TSP genes
1.1 X
1.2 X X
1.3 X X
1.4 X X
1.5 X X
1.6 X X X
1.7 X X X
1.8 X X X
1.9 X X X
1.10 X X X
1.11 X X X
1.12 X X X X
1.13 X X X X
1.14 X X X X
1.15 X X X X
1.16 X X X X X

𝑡-test was performed for each gene to identify the differently
expressed genes. We then compared our models using TSP-
selected coexpressed genes with the models described by
Sboner et al. [5].

3. Results

We proposed the LR models by combining TSP-selected
genes and clinical features to identify and predict the patients
whose PCa will progress. The performance of the models
was evaluated with dataset GSE 16560. Table 1 lists the 16
LR models that we tested. Our models include all possible
combinations of the following variables: age, GS, tumor
percentage, presence of ERG gene rearrangement, and TSP-
selected genes. The AUCs of 1,000 different partitions were
calculated to select the best models. Figure 1(a) shows the
AUC boxplots for the 100 tenfold cross validations of the
16 models listed in Table 1, with one pair of TSP-selected
genes per model. The red stars denote the AUC values
from the validation datasets that correspond to the best LR
models from the learning dataset. Figure 1(b) shows the AUC
boxplots for the same 16 models but with two TSP-selected
gene pairs per model.

We plotted the AUC values of the validation dataset to
assess the effects of the variables on the models (Figure 2).
The blue line represents AUC values from the models with
one TSP-selected gene pair, and the black line represents
those from the models with two TSP-selected gene pairs.
Furthermore, we tested the statistical significance of the
models based on the null hypothesis that there is no difference
between the AUCs of Sboner’s models. It is found that most
of AUC values in Sboner’s models were out of the 95%
confidence intervals of AUCs in our models. So our models
can provide an alternative in predicting prostate cancer
progression. The addition of TSP-selected gene pairs can
improve our models’ prediction of PCa progression, which
differed from Sboner’s results.

What is the role of TSP-selected gene pairs in comparison
with the fusion ERG and the other clinical features, especially
GS? Obviously, the GS was the most statistically significant
variable because all the top models included it. In Figure 2,
the red circles label the 8 models that include the GS. The
AUCs in those 8 models were much higher than they were
in the others and were very similar in the one- and two-
gene-pair models. The 8 AUCs were more than 0.8, as shown
in Figure 2, so we can conclude that the models with TSP-
selected gene pairs performed better than all of Sboner’s
models, for which the largest AUC was 0.79 in [5].

The model using only the GS yielded an AUC of 0.76;
by adding fusion ERG, the largest AUC observed by Sboner
et al. was 0.79 [5]. Similarly, the other models that used only
GS and tumor percent (or age) without molecular profiles
could yield a higher AUC if fusion ERGwas added.Therefore,
the addition of fusion ERG may improve the prediction
capability of models that use only clinical features [5].

However, the effect of fusion ERG was a little different
in our analysis. First, our models could perform better by
replacing fusion ERG with TSP-selected genes. In compar-
ison with the best model with GS and fusion ERG (AUC,
0.79) in [5], our model 1.3 with the GS and TSP-selected
gene pairs performed better, with an AUC of 0.84 (95% CI =
[0.81, 0.88]); our best model was model 1.9, which used GS,
tumor percentage, and one TSP-selected gene pair (AUC,
0.86; 95% CI = [0.79, 0.92]), but the corresponding model
reported by Sboner with fusion ERG for replacement yielded
an AUC of 0.75 [5]. On the other hand, the addition of fusion
ERG had little or no effect on our models that included TSP-
selected gene pairs. For example, the sameAUCwas obtained
with our Model 1.3 and 1.10, with GS, fusion ERG, and TSP-
selected gene pairs. Thus, TSP-selected genes seem to have a
more important effect than the fusion ERGdoes in predicting
PCa progression.

The addition of genes other than fusion ERG could not
improve the prediction capability because the best models
in the Sboner study [5] lacked molecular profiles. However,
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Figure 1: AUC boxplots for 100 tenfold cross validations of 16 models that include TSP-selected genes. The x-axis is the index of 16 models
listed in Table 1, and the y-axis is the AUC values. The red star denotes the corresponding AUC values of the validation dataset that uses the
best logistic regression models from the learning dataset. (a) Models that included one pair of TSP-selected genes and (b) those that included
two such gene pairs.

Table 2: Comparison of the performance of our logistic regression models with that of the nine models evaluated by Sboner et al. [5], using
the same number of genes.

Model number Patient’s age Gleason score Tumor percentage Fusion ERG Number of genes AUC in ref. [5] AUC of our model
2.1 X 18 0.672 0.769
2.2 X X 9 0.708 0.732
2.3 18 0.713 0.736
2.4 X X 21 0.726 0.793
2.5 X 11 0.730 0.712
2.6 X X X 3 0.738 0.806
2.7 X X X 12 0.745 0.804
2.8 X 16 0.749 0.813
2.9 X X 12 0.750 0.788

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.65

0.70

0.75

0.80

0.85

Figure 2: The AUCs of the 16 best models from the validation
dataset.The x-axis is the index of the 16 models listed in Table 1, and
the y-axis is the AUC values.The blue line shows the AUCs from the
models with one TSP-selected gene pair, and the black line shows
those from models with two TSP-selected gene pairs. The points
circled in red are theAUCs in the 8models that included theGleason
score as a variable.

some improvement was observed in our study: by replacing
the molecular profiles in the Sboner models with one or
two TSP-selected gene pairs, our models performed better

than theirs did. For example, the best model with molecular
profiles in the Sboner study used GS, age, and 12 genes and
yielded an AUC of 0.75, whereas our model 1.6, which used
GS, age, and TSP-selected gene pairs, yielded an AUC of 0.8
(95% CI = [0.76, 0.85]). Thus, although we added fewer
genes to ourmodel, its performancewas better.Moreover, the
prediction capability of Sboner’s models was also improved
when the same number of genes was replaced with TSP-
selected gene pairs, as demonstrated in Table 2. Therefore,
adding the TSP-selected genes had an important effect on the
performance of the original models.

Models that use only clinical features may perform better
if appropriate genes, such as those selected with the TSP
algorithm, are added. To explore the effect of adding genes,
we compared our approach with that used in the nine models
in the original study by Sboner et al. [5] that included
genes. For the comparison, we selected the same number of
genes for our models. However, the featured genes in the
models differed each time because the 1,000 random training
and testing partitions were different in the iterative cross
validation procedure.

The results of our comparison were presented in Table 2.
As noted, the AUCs in our models were often higher than
those in the study by Sboner et al. The prognostic models for
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PCa can perform better if the featured genes are selected. In
particular, TSP-selected genes may play an important role.
First, the AUC of the model using only 18 genes increased
from 0.71 in Sboner’s study to 0.74 (95% CI = [0.71, 0.77]) in
ourmodel. Further, theAUCs of themodels that used one and
two TSP-selected gene pairs were 0.71 (95%CI = [0.67, 0.74])
and 0.77 (95% CI = [0.73, 0.81]), respectively. Thus, the TSP-
based models performed better with a smaller number of
genes.

The model from the Sboner study that included the
GS and 16 genes did not perform any better than their
model did that used the GS only, with AUCs of 0.75 and
0.75, respectively [5]. However, the AUC of our model that
included the GS and 16 TSP-selected genes was 0.81 (95%
CI = [0.76, 0.85]) in Table 2, and the models that used GS
and one (or two) TSP gene pair(s) performed better, with an
AUC of 0.84 in Figure 2.

Finally, of all the models tested in the original study, the
one that included the GS and the ERG rearrangement (with
no gene expression data) had the highest AUC value, 0.79 [5],
whereas most of the AUC values for our models were higher
than that. Therefore, in contrast to the conclusion reached by
Sboner et al., we believe that adding themolecular profiles can
improve the results obtained with the traditional prognostic
models of PCa if the appropriate genes are selected.

From the results in Figure 2 andTable 2, wemay conclude
that the models’ performance was not improved by the
addition of large numbers of genes but was improved by the
addition of significant clinical features andmolecular profiles.
For example, adding one TSP-selected gene pair is enough
if the important clinical variables, such as GS, are included
in the model. However, in the case of model 1.1, which
included only one gene signature, and models 1.2 and 1.8,
which also included age, the addition of more gene pairs can
greatly improve the performance. Obviously, the gene selec-
tion strongly depends on the patient samples and so some
statistical techniques such as bootstrap, repeated sampling,
or cross validation were commonly used in the TSP-extended
algorithms. In the current research, the computation cost of
TSP-based algorithms is not the main concern, but the topics
about the optimal number of gene pairs added to improve the
clinical models are still interesting in further research.

4. Conclusion and Discussion

We have introduced an LR-based classification method that
combines TSP-selected genes and clinicalmeasurements.The
empirical results of [19, 20] based on the datasets of prostate
cancer progression show that the classification models using
one or two TSP-selected gene pairs perform better than most
commonly used one-gene-at-a-time approaches. With the
combination of LR, our models not only preserved the basic
advantages of the TSP algorithm but also incorporated the
clinical features. Furthermore, the LR-TSP model provides
the underlying probability of predictionand coexpressed
genes that are used as biomarkers in the model. Thus, our
proposed method provides explicit biologic interpretation of
the clinical tests. Based on the statistical inference with the

iterative cross validation, the better performance was shown
in our models.

As mentioned in the report of Sboner et al. [5], many
factors can influence the performance of the models, such as
the definitions of lethal and indolent PCa, the use of samples
contaminated with stromal tissue, the selection of genes
assayed using a DASL (cDNA-mediated annealing, selection,
extension, and ligation) array, and the effect of intertumor
heterogeneity. Based on the study of GSE 16560, we explored
the possible effect of genes used in the clinical models. The
featured genes are often selected by using a one-gene-at-a-
time approach. Sboner et al. performed a two-sided 𝑡-test
for each gene within the trainingi partition, thereby avoiding
overfitting because the selection of the genes was performed
on only training sets [5].They also implemented stepwise-like
feature selection, sorted the genes according to their 𝑃 values
from the t-testing, and then added the genes to their models.
Our study, on the other hand, demonstrates that coexpression
analysis yields better prediction of tumor progression than
the analysis of individual genes does. Therefore, we conclude
that TSP selection is a useful tool for feature (and/or gene)
selection to use in prognostic models.
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