179 research outputs found

    Habitat Patch Occupancy Dynamics of Glaucous-winged Gulls (larus glaucescens) i: A Discrete-time Model

    Get PDF
    Diurnal habitat occupancy dynamics of Glaucous-winged Gulls were evaluated in a system of six habitats on and around Protection Island, Washington. Data were collected on the rates of gull movement between habitat patches, and from these data the probabilities of transitions between habitats were estimated as functions of tide height and time of day. A discrete-time matrix model based on the transition probabilities was used to generate habitat occupancy predictions, which were then compared to hourly census data. All model parameters were estimated directly from data rather than through model fitting. The model made reasonable predictions for two of the six habitats and explained 45% of the variability in the data from 2003. The construction and testing of mathematical models that predict occupancies in multiple habitats may play increasingly important roles in the understanding and management of animal populations within complex environments. © 2005 Rocky Mountain Mathematics Consortium

    Use of Cyclosporine in Uterine Transplantation

    Get PDF
    Uterine transplantation has been proposed as a possible solution to absolute uterine factor infertility untreatable by any other option. Since the first human attempt in 2000, various teams have tried to clarify which immunosuppressant would be most suitable for protecting the allogeneic uterine graft while posing a minimal risk to the fetus. Cyclosporine A (CsA) is an immunosuppressant widely used by transplant recipients. It is currently being tested as a potential immunosuppressant to be used during UTn. Its effect on the mother and fetus and its influence upon the graft during pregnancy have been of major concern. We review the role of CsA in UTn and its effect on pregnant transplant recipients and their offspring

    Elevated Endogenous Erythropoietin Concentrations Are Associated with Increased Risk of Brain Damage in Extremely Preterm Neonates

    Get PDF
    Background We sought to determine, in very preterm infants, whether elevated perinatal erythropoietin (EPO) concentrations are associated with increased risks of indicators of brain damage, and whether this risk differs by the co-occurrence or absence of intermittent or sustained systemic inflammation (ISSI). Methods Protein concentrations were measured in blood collected from 786 infants born before the 28th week of gestation. EPO was measured on postnatal day 14, and 25 inflammation-related proteins were measured weekly during the first 2 postnatal weeks. We defined ISSI as a concentration in the top quartile of each of 25 inflammation-related proteins on two separate days a week apart. Hypererythropoietinemia (hyperEPO) was defined as the highest quartile for gestational age on postnatal day 14. Using logistic regression and multinomial logistic regression models, we compared risks of brain damage among neonates with hyperEPO only, ISSI only, and hyperEPO+ISSI, to those who had neither hyperEPO nor ISSI, adjusting for gestational age. Results Newborns with hyperEPO, regardless of ISSI, were more than twice as likely as those without to have very low (< 55) Mental (OR 2.3; 95% CI 1.5-3.5) and/or Psychomotor (OR 2.4; 95% CI 1.6-3.7) Development Indices (MDI, PDI), and microcephaly at age two years (OR 2.4; 95%CI 1.5-3.8). Newborns with both hyperEPO and ISSI had significantly increased risks of ventriculomegaly, hemiparetic cerebral palsy, microcephaly, and MDI and PDI < 55 (ORs ranged from 2.2-6.3), but not hypoechoic lesions or other forms of cerebral palsy, relative to newborns with neither hyperEPO nor ISSI. Conclusion hyperEPO, regardless of ISSI, is associated with elevated risks of very low MDI and PDI, and microcephaly, but not with any form of cerebral palsy. Children with both hyperEPO and ISSI are at higher risk than others of very low MDI and PDI, ventriculomegaly, hemiparetic cerebral palsy, and microcephaly

    Structural and molecular interrogation of intact biological systems

    Get PDF
    Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using mouse brains, we show intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters. CLARITY also enables intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in non-sectioned tissue, and antibody labelling throughout the intact adult mouse brain. Finally, we show that CLARITY enables fine structural analysis of clinical samples, including non-sectioned human tissue from a neuropsychiatric-disease setting, establishing a path for the transmutation of human tissue into a stable, intact and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease

    Adenosine Triphosphate (ATP) as a Metric of Microbial Biomass in Aquatic Systems: New Simplified Protocols, Laboratory Validation, and a Reflection on Data From the Literature

    Get PDF
    The use of adenosine triphosphate (ATP) as a universal biomass indicator is built on the premise that ATP concentration tracks biomass rather than the physiological condition of cells. However, reportedly high variability in ATP in response to environmental conditions is the main reason the method has not found widespread application. To test possible sources of this variability, we used the diatom Thalassiosira weissflogii as a model and manipulated its growth rate through nutrient limitation and through exposure to three different temperatures (15°C, 20°C, and 25°C). We simplified the ATP protocol with hot‐water or chemical extraction methods, modified a commercially available luciferin‐luciferase assay, and employed single‐photon counting in a scintillation counter, all of which increased sensitivity and throughput. Per‐cell ATP levels remained relatively constant despite changes in growth rates by approximately 10‐fold in the batch culture (i.e., nutrient limitation) experiments, and approximately 2‐fold in response to temperature. The re‐examination of related literature values revealed that average cellular ATP levels differed little among taxonomic groups of aquatic microbes, even at the domain level, and correlated well with bulk properties such as elemental carbon or nitrogen. Fulfilling multiple cellular functions in addition to being the universal energy currency requires ATP to be maintained in a millimolar concentration range. Consequently, ATP relates directly to live cytoplasm volume, while elemental carbon and nitrogen are constrained by an indeterminate pool of detrital material and intracellular storage compounds. The ATP‐biomass indicator is sensitive, economical, and can be readily standardized among laboratories and across environments

    Progress in Classical and Quantum Variational Principles

    Full text link
    We review the development and practical uses of a generalized Maupertuis least action principle in classical mechanics, in which the action is varied under the constraint of fixed mean energy for the trial trajectory. The original Maupertuis (Euler-Lagrange) principle constrains the energy at every point along the trajectory. The generalized Maupertuis principle is equivalent to Hamilton's principle. Reciprocal principles are also derived for both the generalized Maupertuis and the Hamilton principles. The Reciprocal Maupertuis Principle is the classical limit of Schr\"{o}dinger's variational principle of wave mechanics, and is also very useful to solve practical problems in both classical and semiclassical mechanics, in complete analogy with the quantum Rayleigh-Ritz method. Classical, semiclassical and quantum variational calculations are carried out for a number of systems, and the results are compared. Pedagogical as well as research problems are used as examples, which include nonconservative as well as relativistic systems

    Photon-Photon and Electron-Photon Colliders with Energies Below a TeV

    Get PDF
    We investigate the potential for detecting and studying Higgs bosons in γγ\gamma\gamma and eγe\gamma collisions at future linear colliders with energies below a TeV. Our study incorporates realistic γγ\gamma\gamma spectra based on available laser technology, and NLC and CLIC acceleration techniques. Results include detector simulations. We study the cases of: a) a SM-like Higgs boson based on a devoted low energy machine with see200\sqrt{s_{ee}}\le 200 GeV; b) the heavy MSSM Higgs bosons; and c) charged Higgs bosons in eγe\gamma collisions.We investigate the potential for detecting and studying Higgs bosons in γγ\gamma\gamma and eγe\gamma collisions at future linear colliders with energies below a TeV. Our study incorporates realistic γγ\gamma\gamma spectra based on available laser technology, and NLC and CLIC acceleration techniques. Results include detector simulations. We study the cases of: a) a SM-like Higgs boson based on a devoted low energy machine with see200\sqrt{s_{ee}}\le 200 GeV; b) the heavy MSSM Higgs bosons; and c) charged Higgs bosons in eγe\gamma collisions
    corecore