102 research outputs found

    Electrochemical Characterization of Self-Assembled Monolayers on Gold Substrates Derived from Thermal Decomposition of Monolayer-Protected Cluster Films

    Get PDF
    Networked films of monolayer-protected clusters (MPCs), alkanethiolate-stabilized gold nanoparticles, can be thermally decomposed to form stable gold on glass substrates that are subsequently modified with self-assembled monolayers (SAMs) for use as modified electrodes. Electrochemical assessment of these SAM-modified gold substrates, including double-layer capacitance measurements, linear sweep desorption of the alkanethiolates, and diffusional redox probing, all show that SAMs formed on gold supports formed from thermolysis of MPC films possess substantially higher defect density compared to SAMs formed on traditional evaporated gold. The density of defects in the SAMs on thermolyzed gold is directly related to the strategies used to assemble the MPC film prior to thermolysis. Specifically, gold substrates formed from thermally decomposing MPC films formed with electrostatic bridges between carboxylic acid-modified MPCs and metal ion linkers are particularly sensitive to the degree of metal exposure during the assembly process. While specific metal dependence was observed, metal concentration within the MPC precursor film was determined to be a more significant factor. Specific MPC film linking strategies and pretreatment methods that emphasized lower metal exposure resulted in gold films that supported SAMs of lower defect density. The defect density of a SAM-modified electrode is shown to be critical in certain electrochemical experiments such as protein monolayer electrochemistry of adsorbed cytochrome c. While the thermal decomposition of nanoparticle film assemblies remains a viable and interesting technique for coating both flat and irregular shaped substrates, this study provides electrochemical assessment tools and tactics for determining and controlling SAM defect density on this type of gold structure, a property critical to their effective use in subsequent electrochemical applications

    Regulation of Neurological Devices and Neurointerventional Endovascular Approaches for Acute Ischemic Stroke

    Get PDF
    The United States Food and Drug Administration (FDA) Center for Devices and Radiological Health (CDRH) is charged with ensuring patients in the US have timely access to high-quality, safe, and effective medical devices of public health importance. Within CDRH, the Division of Neurological and Physical Medicine Devices reviews medical technologies that interface with the central and peripheral nervous system (neurotechnologies), including neurointerventional medical devices that are used in the treatment of stroke. Endovascular treatments have demonstrated recent advances in reaching the marketplace and providing more options for patients with acute ischemic stroke and intracranial aneurysms specifically. Depending upon the pathway chosen for regulatory approval, and the evidentiary standard for different regulatory pathways, neurotechnologies can have well-established safety and effectiveness profiles, varying degrees of scientific and clinical uncertainty regarding safety and effectiveness, or when a humanitarian use exists, need only demonstrate a probable benefit and safety to the patient so potentially life-saving treatments can reach the marketplace. Reperfusion therapies have had specific advances in the treatment of stroke patients that originally had limited or no treatment options and for preventative treatments in providing care to patients with intracranial aneurysms to avoid potentially more catastrophic outcomes. Collaboration in multiple forums and environments will be important to continue to foster the neurointerventional technology sector and positively impact clinical medicine, from diagnosing and treating a neurological disorder, to potentially altering the progression of disease, and in many ways, contemporary approved devices have brought a new sense of hope and optimism that serious and otherwise disabling neurological diseases can be treated and in many cases cured with modern therapy. We present here the scope of FDA’s regulatory landscape for neurological devices and neurointerventional endovascular approaches for acute ischemic stroke; this is essential information for those seeking to successfully translate medical device neurotechnologies for patient and consumer use

    Creation of ultracold molecules from a Fermi gas of atoms

    Full text link
    Since the realization of Bose-Einstein condensates (BEC) in atomic gases an experimental challenge has been the production of molecular gases in the quantum regime. A promising approach is to create the molecular gas directly from an ultracold atomic gas; for example, atoms in a BEC have been coupled to electronic ground-state molecules through photoassociation as well as through a magnetic-field Feshbach resonance. The availability of atomic Fermi gases provides the exciting prospect of coupling fermionic atoms to bosonic molecules, and thus altering the quantum statistics of the system. This Fermi-Bose coupling is closely related to the pairing mechanism for a novel fermionic superfluid proposed to occur near a Feshbach resonance. Here we report the creation and quantitative characterization of exotic, ultracold 40^{40}K2_2 molecules. Starting with a quantum degenerate Fermi gas of atoms at T < 150 nanoKelvin we scan over a Feshbach resonance to adiabatically create over a quarter million trapped molecules, which we can convert back to atoms by reversing the scan. The small binding energy of the molecules is controlled by detuning from the Feshbach resonance and can be varied over a wide range. We directly detect these weakly bound molecules through rf photodissociation spectra that probe the molecular wavefunction and yield binding energies that are consistent with theory

    The prevalence, incidence and natural history of primary sclerosing cholangitis in an ethnically diverse population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary sclerosing cholangitis (PSC) is a rare chronic cholestatic liver disease often associated with inflammatory bowel diseases (IBD). Current epidemiological data are limited to studies of predominantly Caucasian populations. Our aim was to define the epidemiology of PSC in a large, ethnically diverse US population.</p> <p>Methods</p> <p>The Northern California Kaiser Permanente (KP) database includes records from over 3 million people and was searched for cases of PSC between January 2000 and October 2006. All identified charts were reviewed for diagnosis confirmation, IBD co-morbidity, and major natural history endpoints.</p> <p>Results</p> <p>We identified 169 (101 males) cases fulfilling PSC diagnostic criteria with a mean age at diagnosis of 44 years (range 11-81). The age-adjusted point prevalence was 4.15 per 100,000 on December 31, 2005. The age-adjusted incidence per 100,000 person-years was not significantly greater in men 0.45 (95% CI 0.33 - 0.61) than women 0.37 (95% CI 0.26 - 0.51). IBD was present in 109/169 (64.5%) cases and was significantly more frequent in men than women with PSC (73.3% and 51.5%, respectively, p = 0.005). The cumulative average yearly mortality rate was 1.9%. Age and serum sodium, creatinine and bilirubin at diagnosis and albumin at last entry were identified as significant factors associated with death, liver transplant or cholangiocarcinoma.</p> <p>Conclusions</p> <p>The incidence and prevalence of PSC observed in a representative Northern California population are lower compared to previous studies in Caucasian populations and this might reflect differences in the incidence of PSC among various ethnic groups.</p

    Governors and directors: Competing models of corporate governance

    Get PDF
    Why do we use the term ‘corporate governance’ rather than ‘corporate direction’? Early British joint stock companies were normally managed by a single ‘governor’. The ‘court of governors’ or ‘board of directors’ emerged slowly as the ruling body for companies. By the nineteenth century, however, companies were typically run by directors while not-for-profit entities such as hospitals, schools and charitable bodies had governors. The nineteenth century saw steady refinement of the roles of company directors, often in response to corporate scandals, with a gradual change from the notion of the director as a ‘representative shareholder’ to the directors being seen collectively as ‘representatives of the shareholders’. Governors in not-for-profit entities, however, were regarded as having broader responsibilities. The term ‘governance’ itself suggests that corporate boards should be studied as ‘political’ entities rather than merely through economic lenses such as agency theory

    Human and mouse neuroinflammation markers in Niemann‐Pick disease, type C1

    Full text link
    Niemann‐Pick disease, type C1 (NPC1) is an autosomal recessive lipid storage disorder in which a pathological cascade, including neuroinflammation occurs. While data demonstrating neuroinflammation is prevalent in mouse models, data from NPC1 patients is lacking. The current study focuses on identifying potential markers of neuroinflammation in NPC1 from both the Npc1 mouse model and NPC1 patients. We identified in the mouse model significant changes in expression of genes associated with inflammation and compared these results to the pattern of expression in human cortex and cerebellar tissue. From gene expression array analysis, complement 3 (C3) was increased in mouse and human post‐mortem NPC1 brain tissues. We also characterized protein levels of inflammatory markers in cerebrospinal fluid (CSF) from NPC1 patients and controls. We found increased levels of interleukin 3, chemokine (C‐X‐C motif) ligand 5, interleukin 16 and chemokine ligand 3 (CCL3), and decreased levels of interleukin 4, 10, 13 and 12p40 in CSF from NPC1 patients. CSF markers were evaluated with respect to phenotypic severity. Miglustat treatment in NPC1 patients slightly decreased IL‐3, IL‐10 and IL‐13 CSF levels; however, further studies are needed to establish a strong effect of miglustat on inflammation markers. The identification of inflammatory markers with altered levels in the cerebrospinal fluid of NPC1 patients may provide a means to follow secondary events in NPC1 disease during therapeutic trials.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147148/1/jimd0083.pd

    The ATP-Binding Cassette Proteins of the Deep-Branching Protozoan Parasite Trichomonas vaginalis

    Get PDF
    The ATP binding cassette (ABC) proteins are a family of membrane transporters and regulatory proteins responsible for diverse and critical cellular process in all organisms. To date, there has been no attempt to investigate this class of proteins in the infectious parasite Trichomonas vaginalis. We have utilized a combination of bioinformatics, gene sequence analysis, gene expression and confocal microscopy to investigate the ABC proteins of T. vaginalis. We demonstrate that, uniquely among eukaryotes, T. vaginalis possesses no intact full-length ABC transporters and has undergone a dramatic expansion of some ABC protein sub-families. Furthermore, we provide preliminary evidence that T. vaginalis is able to read through in-frame stop codons to express ABC transporter components from gene pairs in a head-to-tail orientation. Finally, with confocal microscopy we demonstrate the expression and endoplasmic reticulum localization of a number of T. vaginalis ABC transporters

    Dipeptidyl peptidase-1 inhibition in patients hospitalised with COVID-19:a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial

    Get PDF
    This study was funded by an investigator-initiated research grant from Insmed (Bridgewater, NJ, USA). The authors acknowledge the funding and logistical support from the UK National Institute for Health and Care Research.Background: Neutrophil serine proteases are involved in the pathogenesis of COVID-19 and increased serine protease activity has been reported in severe and fatal infection. We investigated whether brensocatib, an inhibitor of dipeptidyl peptidase-1 (DPP-1; an enzyme responsible for the activation of neutrophil serine proteases), would improve outcomes in patients hospitalised with COVID-19. Methods: In a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial, across 14 hospitals in the UK, patients aged 16 years and older who were hospitalised with COVID-19 and had at least one risk factor for severe disease were randomly assigned 1:1, within 96 h of hospital admission, to once-daily brensocatib 25 mg or placebo orally for 28 days. Patients were randomly assigned via a central web-based randomisation system (TruST). Randomisation was stratified by site and age (65 years or ≥65 years), and within each stratum, blocks were of random sizes of two, four, or six patients. Participants in both groups continued to receive other therapies required to manage their condition. Participants, study staff, and investigators were masked to the study assignment. The primary outcome was the 7-point WHO ordinal scale for clinical status at day 29 after random assignment. The intention-to-treat population included all patients who were randomly assigned and met the enrolment criteria. The safety population included all participants who received at least one dose of study medication. This study was registered with the ISRCTN registry, ISRCTN30564012. Findings: Between June 5, 2020, and Jan 25, 2021, 406 patients were randomly assigned to brensocatib or placebo; 192 (47·3%) to the brensocatib group and 214 (52·7%) to the placebo group. Two participants were excluded after being randomly assigned in the brensocatib group (214 patients included in the placebo group and 190 included in the brensocatib group in the intention-to-treat population). Primary outcome data was unavailable for six patients (three in the brensocatib group and three in the placebo group). Patients in the brensocatib group had worse clinical status at day 29 after being randomly assigned than those in the placebo group (adjusted odds ratio 0·72 [95% CI 0·57-0·92]). Prespecified subgroup analyses of the primary outcome supported the primary results. 185 participants reported at least one adverse event; 99 (46%) in the placebo group and 86 (45%) in the brensocatib group. The most common adverse events were gastrointestinal disorders and infections. One death in the placebo group was judged as possibly related to study drug. Interpretation: Brensocatib treatment did not improve clinical status at day 29 in patients hospitalised with COVID-19.Publisher PDFPeer reviewe
    corecore