62 research outputs found

    Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human achilles tendon

    Get PDF
    To profile the messenger RNA (mRNA) expression for the 23 known genes of matrix metalloproteinases (MMPs), 19 genes of ADAMTS, 4 genes of tissue inhibitors of metalloproteinases (TIMPs), and ADAM genes 8, 10, 12, and 17 in normal, painful, and ruptured Achilles tendons. Tendon samples were obtained from cadavers or from patients undergoing surgical procedures to treat chronic painful tendinopathy or ruptured tendon. Total RNA was extracted and mRNA expression was analyzed by quantitative real-time reverse transcription–polymerase chain reaction, normalized to 18S ribosomal RNA. In comparing expression of all genes, the normal, painful, and ruptured Achilles tendon groups each had a distinct mRNA expression signature. Three mRNA were not detected and 14 showed no significant difference in expression levels between the groups. Statistically significant (P < 0.05) differences in mRNA expression, when adjusted for age, included lower levels of MMPs 3 and 10 and TIMP-3 and higher levels of ADAM-12 and MMP-23 in painful compared with normal tendons, and lower levels of MMPs 3 and 7 and TIMPs 2, 3, and 4 and higher levels of ADAMs 8 and 12, MMPs 1, 9, 19, and 25, and TIMP-1 in ruptured compared with normal tendons. The distinct mRNA profile of each tendon group suggests differences in extracellular proteolytic activity, which would affect the production and remodeling of the tendon extracellular matrix. Some proteolytic activities are implicated in the maintenance of normal tendon, while chronically painful tendons and ruptured tendons are shown to be distinct groups. These data will provide a foundation for further study of the role and activity of many of these enzymes that underlie the pathologic processes in the tendon

    Two MC1R loss-of-function alleles in cream-coloured Australian Cattle Dogs and white Huskies.

    Get PDF
    Loss-of-function variants in the MC1R gene cause recessive red or yellow coat-colour phenotypes in many species. The canine MC1R:c.916C>T (p.Arg306Ter) variant is widespread and found in a homozygous state in many uniformly yellow- or red-coloured dogs. We investigated cream-coloured Australian Cattle Dogs whose coat colour could not be explained by this variant. A genome-wide association study with 10 cream and 123 red Australian Cattle Dogs confirmed that the cream locus indeed maps to MC1R. Whole-genome sequencing of cream dogs revealed a single nucleotide variant within the MITF binding site of the canine MC1R promoter. We propose to designate the mutant alleles at MC1R:c.916C>T as e1 and at the new promoter variant as e2. Both alleles segregate in the Australian Cattle Dog breed. When we considered both alleles in combination, we observed perfect association between the MC1R genotypes and the cream coat colour phenotype in a cohort of 10 cases and 324 control dogs. Analysis of the MC1R transcript levels in an e /e compound heterozygous dog confirmed that the transcript levels of the e2 allele were markedly reduced with respect to the e1 allele. We further report another MC1R loss-of-function allele in Alaskan and Siberian Huskies caused by a 2-bp deletion in the coding sequence, MC1R:c.816_817delCT. We propose to term this allele e3. Huskies that carry two copies of MC1R loss-of-function alleles have a white coat colour

    Structural Diversity in Bacterial Ribosomes: Mycobacterial 70S Ribosome Structure Reveals Novel Features

    Get PDF
    Here we present analysis of a 3D cryo-EM map of the 70S ribosome from Mycobacterium smegmatis, a saprophytic cousin of the etiological agent of tuberculosis in humans, Mycobacterium tuberculosis. In comparison with the 3D structures of other prokaryotic ribosomes, the density map of the M. smegmatis 70S ribosome reveals unique structural features and their relative orientations in the ribosome. Dramatic changes in the periphery due to additional rRNA segments and extra domains of some of the peripheral ribosomal proteins like S3, S5, S16, L17, L25, are evident. One of the most notable features appears in the large subunit near L1 stalk as a long helical structure next to helix 54 of the 23S rRNA. The sharp upper end of this structure is located in the vicinity of the mRNA exit channel. Although the M. smegmatis 70S ribosome possesses conserved core structure of bacterial ribosome, the new structural features, unveiled in this study, demonstrates diversity in the 3D architecture of bacterial ribosomes. We postulate that the prominent helical structure related to the 23S rRNA actively participates in the mechanisms of translation in mycobacteria

    Understanding the relationship between interfragmentary movement and callus growth in fracture healing: A novel computational approach

    Get PDF
    Introduction &amp; Aims Optimising fracture treatments requires a sound understanding of relationships between stability, callus development and healing outcomes. This has been the goal of computational modelling, but discrepancies remain between simulations and experimental results. We compared healing patterns vs fixation stiffness between a novel computational callus growth model and corresponding experimental data. Hypothesis We hypothesised that callus growth is stimulated by diffusible signals, whose production is in turn regulated by mechanical conditions at the fracture site. We proposed that introducing this scheme into computational models would better replicate the observed tissue patterns and the inverse relationship between callus size and fixation stiffness. Method Finite element models of bone healing under stiff and flexible fixation were constructed, based on the parameters of a parallel rat femoral osteotomy study. An iterative procedure was implemented, to simulate the development of callus and its mechanical regulation. Tissue changes were regulated according to published mechano-biological criteria. Predictions of healing patterns were compared between standard models, with a pre-defined domain for callus development, and a novel approach, in which periosteal callus growth is driven by a diffusible signal. Production of this signal was driven by local mechanical conditions. Finally, each model’s predictions were compared to the corresponding histological data. Results Models in which healing progressed within a prescribed callus domain predicted that greater interfragmentary movements would displace early periosteal bone formation further from the fracture. This results from artificially large distortional strains predicted near the fracture edge. While experiments showed increased hard callus size under flexible fixation, this was not reflected in the standard models. Allowing the callus to grow from a thin soft tissue layer, in response to a mechanically stimulated diffusible signal, results in a callus shape and tissue distribution closer to those observed histologically. Importantly, the callus volume increased with increasing interfragmentary movement. Conclusions A novel method to incorporate callus growth into computational models of fracture healing allowed us to successfully capture the relationship between callus size and fixation stability observed in our rat experiments. This approach expands our toolkit for understanding the influence of different fixation strategies on healing outcomes
    • …
    corecore