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Summary 

Loss of function variants in the MC1R gene cause recessive red or yellow coat colour 

phenotypes in many species. The canine MC1R:c.916C>T (p.Arg306ter) variant is 

widespread and found in homozygous state in many uniformly yellow or red coloured dogs. 

We investigated cream coloured Australian Cattle Dogs whose coat colour could not be 

explained by this variant. A genome-wide association study with 10 cream and 123 red 

Australian Cattle Dogs confirmed that the cream locus indeed maps to MC1R. Whole 

genome sequencing of cream dogs revealed a single nucleotide variant within the MITF 

binding site of the canine MC1R promoter. We propose to designate the mutant alleles at 

MC1R:c.916C>T as e1 and at the new promoter variant as e2. Both alleles segregate in the 

Australian Cattle Dog breed. When we considered both alleles in combination, we observed 

perfect association between the MC1R genotypes and the cream coat colour phenotype in a 

cohort of 10 cases and 324 control dogs. Analysis of the MC1R transcript levels in an e1/e2 

compound heterozygous dog confirmed that the transcript levels of the e2 allele were 

markedly reduced with respect to the e1 allele. We further report another MC1R loss of 

function allele in Alaskan and Siberian Huskies, which is caused by a 2 bp deletion in the 

coding sequence, MC1R:c.816_817delCT. We propose to term this mutant allele e3. Huskies 

that carry two copies of MC1R loss of function alleles have a white coat colour. 

 

 

 

Keywords: Canis lupus familiaris, pigmentation, melanocyte, heterogeneity, non-coding, 

transcription, e2, e3  
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Introduction 

Melanocytes, the only pigment producing cell type in mammals, are able to synthesize two 

types of pigment: yellow-reddish pheomelanin and dark brown or black eumelanin. Pigment 

type switching governs which of the two types of pigment is produced at a given point in time 

(Barsh et al. 2000). The melanocortin receptor 1 (MC1R), a G-protein coupled receptor with 

seven transmembrane domains, is one of the key regulators of pigment type switching 

(Mountjoy et al. 1992). MC1R activation prompts the melanocyte to produce eumelanin, 

while MC1R inhibition leads to the production of pheomelanin (Barsh et al. 2000). A huge 

number of functional genetic variants at the MC1R gene is known in many different species, 

which either lead to dominant black coat colour phenotypes (gain of function alleles) or 

recessive red or yellow phenotypes (loss of function alleles; Robbins et al. 1993). As coat 

colour variation has already been studied long before the rise of molecular genetics, MC1R 

alleles are still named in reference to the extension locus (E) from classical genetics (Wright, 

1917; Robbins et al. 1993). 

In dogs, three mutant MC1R alleles in addition to the wildtype E+ allele were characterized on 

the molecular level: EM > EG > E+ > e. The most dominant allele EM caused by the amino acid 

exchange p.Val264Met is found in dogs with a black mask such as e.g. Leonbergers or 

Malinois (Schmutz et al. 2003). The EG allele caused by p.Gly78Val is found in “grizzle” 

Salukis or “domino” Afghan Hounds (Dreger & Schmutz, 2010). Finally, the recessive loss of 

function allele e, caused by the p.Arg306ter variant is found in yellow or red coloured dogs 

such as e.g. yellow Labrador Retrievers, red Irish Setters, and many others (Everts et al. 

2000; Newton et al. 2000). 

The standard coat colours of the Australian Cattle Dog are red or black and tan (“blue”) with 

varying degrees of mottling and/or speckling (Figure 1). This variation in the base coat colour 

is most likely controlled by the dominant ay and recessive at alleles at the agouti (A) locus or 

ASIP gene (Berryere et al. 2005). Occasionally cream coloured dogs are born from red or 

blue parents. The cream colour does not correspond to the breed standard and cream 

coloured dogs cannot be registered. The first goal of this study was to investigate the 
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molecular basis of the cream coat colour phenotype in Australian Cattle Dogs. The second 

goal of this study was to investigate the genotype phenotype correlation of a 2 bp deletion in 

MC1R, which was previously presented during a conference (Schmutz & Loechel, 2015). 

 

 

 

Material and Methods 

Ethics statement 

All animal experiments were performed according to the local regulations. The dogs in this 

study were examined with the consent of their owners. The study was approved by the “Can-

tonal Committee For Animal Experiments” (Canton of Bern; permits 75/16 and 38/17). 

 

Animals and DNA isolation 

Samples from 10 cream coloured and 324 non-cream coloured Australian Cattle dogs were 

used for the study. The phenotype of the cream coloured dogs was evaluated based on 

photographs. The coat colour phenotype of the control dogs was either based on the 

pedigree record and/or as reported by the owner. Genomic DNA was extracted from EDTA 

blood samples using the Maxwell RSC Whole Blood DNA kit, used with the Maxwell RSC 

Instrument (Promega). Samples from 50 Huskies were used. These were either Siberian 

Huskies, an AKC and FCI recognized breed or Alaskan Huskies, which represent working 

dogs without official pedigree registrations that are bred for sled racing. Fifteen Huskies were 

white and 35 had a significant amount of black, grey, brown, or red hair and were classified 

as non-white. We additionally used DNA samples from 628 dogs of diverse breeds that had 

been submitted to the Vetsuisse Biobank. 

 

SNP genotyping, GWAS, and haplotype analyses 

Genotyping of 10 cream and 123 non-cream Australian Cattle Dogs was done on Illumina 

CanineHD BeadChips containing either 173,662 or 220,853 SNVs by GeneSeek/Neogen. 
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The SNV genotype data are publicly available at 

https://www.animalgenome.org/repository/pub/BERN2017.1010/. PLINK v1.09 (Chang et al. 

2015) was used to perform basic quality filtering operations on the dataset. First, all 

genotypes from markers with call rates < 100% were removed. Then, the pruned genotypes 

were used to perform an allelic genome-wide association study (GWAS). The analysis 

comprising MDS plot, QT score, principal component analysis (PCA) and a mixed model 

approach was done using the GenABEL library (Aulchenko et al. 2007) and the hglm 

package (Ronnegard et al. 2010) in the R environment. During the quality control step, 

uninformative SNPs with a minor allele frequency below 1%, and SNPs deviating strongly 

from Hardy-Weinberg equilibrium (p-value of 0.000001) were excluded. All individuals had 

call rates >95%. The final dataset for GWAS consisted of 133 dogs and 67,918 markers. 

Haplotypes were phased with Shapeit (Delaneau et al 2014). 

 

Sanger sequencing 

All primer sequences are listed in Table S1. The entire coding sequence of the canine MC1R 

gene was amplified as two overlapping genomic PCR products. A third amplicon was 

generated for the promoter region. PCR products were directly sequenced on an ABI 3730 

capillary sequencer (Applied Biosystems) after treatment with exonuclease I and shrimp 

alkaline phosphatase. Sequence data were analysed with Sequencher 5.1 (GeneCodes). 

 

Whole genome sequencing 

Illumina TruSeq PCR-free libraries with insert sizes of 350 bp were prepared from two cream 

and one blue Australian Cattle Dog. We also prepared libraries from one Alaskan and one 

Siberian Husky. The libraries were sequenced using 2 x 150 bp reads on an Illumina HiSeq 

3000 instrument. Single nucleotide and small indel variants with respect to the CanFam3.1 

canine reference genome assembly were called as described (Bauer et al. 2017). The 

variants were compared to previously obtained genome sequences. In total, 3 wolf and 188 
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dog genomes were analysed (Table S2). The functional effect of variants was predicted 

using SNPeff (Cingolani et al. 2012) and the NCBI annotation release 104. 

 

RNA isolation and RT-PCR 

Total RNA from a skin biopsy of an e1/e2 Australian Cattle Dog dog with cream coat colour 

was isolated using QIAzol and RNeasy spin columns according to the manufacturer’s 

recommendations (Qiagen). RNA samples were treated with RNase-free DNase to remove 

contaminations with genomic DNA. Reverse transcription was carried out using an oligo-dT 

primer, and Superscript® IV reverse transcriptase according to the manufacturer’s 

recommendations (Invitrogen). PCR was performed with 2 µl of the synthesized cDNA and 

the primer pair for the 3’-end of the MC1R gene (Table S1). As MC1R consists of a single 

exon, the same primers can be used for amplification on genomic DNA and cDNA. A control 

reaction on the isolated RNA without reverse transcriptase was run in parallel to ensure that 

the RNA did not contain any genomic DNA contamination. The cDNA amplicon was 

sequenced with the internal primer CACTATCCTGCTGGGCATTT. 

 

Reference sequences 

All analyses were performed with respect to the CanFam 3.1 genome reference assembly. 

Numbering within the canine MC1R gene refers to the mRNA accession NM_001014282.2 

and the protein accession NP_001014304.2.  
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Results 

 

Candidate gene analysis of the MC1R coding sequence in Australian Cattle Dogs 

All 10 available cream coloured Australian Cattle Dogs had two non-cream parents 

suggesting autosomal recessive inheritance of the cream coat colour. We therefore 

hypothesized that the cream colour in Australian Cattle Dogs is caused by a loss of function 

variant in the MC1R gene. We genotyped the 10 cases for the known MC1R:c.916C>T 

(p.Arg306ter) variant and observed all three genotypes at this variant in the cream coloured 

dogs. One dog was homozygous for the variant allele, four were heterozygous, and five were 

homozygous wildtype. As these data suggested allelic heterogeneity, we sequenced the 

entire coding sequence of MC1R in all the cases. However, this analysis did not reveal 

additional loss of function variants within the MC1R coding sequence. 

 

Genome-wide association study (GWAS) 

As the initial candidate gene analysis had not revealed the hypothesized additional MC1R 

allele, we switched to a hypothesis-free approach and performed a genome-wide allelic 

association study with 10 cream (cases) and 123 red (control) Australian Cattle Dogs. GWAS 

revealed a single significant association signal close to the MC1R gene (Figure 2). The best 

associated marker BICF2S23624769 at Chr5:63,661,161 had a P-value of 5.3 x 10-9 after 

correction for population stratification (Pc1df). As the GWAS confirmed association to the 

MC1R locus, we expanded our search for the candidate causative variant to the presumed 

non-coding regulatory regions of MC1R. Phasing of the MC1R haplotypes of the genotyped 

dogs revealed only two different haplotypes in the cream dogs. One of these haplotypes 

contained the T-allele at MC1R:c.916C>T, which from now on we designate as e1. The 

presumed second loss of function allele was designated e2.  
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Identification of a promoter variant by whole genome sequencing 

We obtained whole genome sequences from a cream dog, homozygous for the unknown 

allele (e2/e2), another cream dog, which was compound heterozygous (e1/e2) and a blue 

control dog (E+/E+). The sequences were compared to 188 additional publicly available 

genome sequences from wolves and genetically diverse dogs. 

The sequencing data contained 43 variants in the MC1R coding sequence and 1 kb each of 

upstream and downstream regions (Table S3). Only one of the 43 variants showed the 

genotype distribution expected for the e2 causative variant, Chr5:63,695,679C>G. This 

variant is located 430 nucleotides upstream of the start codon within an E-box motif that in 

humans and mice has been shown to act as binding site for MITF, a key regulatory 

transcription factor of melanocytes (Figure 3; Figure S1; Steingrimsson et al. 2004). MITF 

binding sites contain an E-box motif with the consensus sequence CAYGTG. The most 

frequently observed binding motif in mammals is CATGTG, in which the CATGTG motif must 

be flanked by a T at the 5’-end or an A at the 3’-end. Alternatively, the palindromic binding 

site CACGTG functions equally well and has no requirements for additional flanking 

nucleotides (Aksan & Goding, 1998). The E-box in the canine MC1R promoter sequence has 

the sequence CACGTG. In the e2 allele the conserved guanine at the fourth position is 

replaced by a cytosine (CACCTG). 

We genotyped the e1 and e2 variants in 334 Australian Cattle Dogs and observed perfect 

association of the genotypes with the phenotypes. The carrier frequencies for e1 and e2 in the 

Australian Cattle Dogs with standard coat colours were 6% and 12%, respectively (Table 1). 

The e2 allele did not occur in 649 dogs from 60 genetically diverse breeds (Table S4). 

 

Demonstration of downregulated MC1R transcription from the e2 allele 

For experimental confirmation of the postulated regulatory effect, we obtained skin RNA from 

an e1/e2 compound heterozygous dog. We amplified genomic DNA fragments containing the 

e1 and e2 variants. Sanger sequencing of these genomic PCR products resulted in the 

expected 1 : 1 ratio of peaks at the heterozygous position +916 in the electropherogram. 
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However, when we performed RT-PCR on the RNA sample and sequenced the resulting 

cDNA product, the e1 allele was markedly more intense than the e2 allele. This observed 

allelic imbalance suggested a massive downregulation of MC1R transcription from the allele 

with the promoter variant in the MITF binding site. 

 

Identification of an e3 allele in Huskies 

The analysis of the genome sequences from an Alaskan and a Siberian Husky revealed an 

additional frame-shift variant within the MC1R coding sequence, MC1R:c.816_817delCT 

(Figure S1, Table S3). This deletion is predicted to lead to the expression of an altered 

MC1R, in which the last transmembrane domain and the cytoplasmic C-terminal tail are 

missing, p.(Ile272MetfsTer22). We propose to designate this variant as e3. We obtained the 

e1 and e3 genotypes in a cohort of 50 Huskies and observed perfect association of white coat 

colour with the presence of two MC1R loss of function alleles (Table 2). The “white” coat 

colour in Huskies can be more precisely described as an extremely pale pheomelanistic 

(yellowish) colour (Figure 5A). Our cohort included a complete family with seven offspring 

that confirmed the expected co-segregation of e1 and e3 with the white coat colour (Figure 

5B). We did not detect the e3 allele in any of the other breeds that we investigated (Table 

S4). 

 

 

 

Discussion 

In this study we identified a single nucleotide variant in the MC1R promoter as likely cause 

for a new loss of function allele, termed e2, which together with the previously reported e1 

allele explains the cream coat colour in Australian Cattle Dogs. We provided functional data 

that demonstrate a substantial reduction of MC1R mRNA levels associated with the e2 allele. 

This effect is most likely due to the loss of the binding site for MITF, which has been shown 
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to be a strong activator of MC1R transcription (Aksan & Goding, 1998; Adachi et al. 2000; 

Aoki & Moro, 2002; Steingrimsson et al. 2004). 

Although our data indicated some residual transcription of MC1R from the e2 allele, this is 

apparently not sufficient to activate eumelanin synthesis in e2/e2 dogs. The coat colour of the 

e1/e1 dog in our study was not visibly different from the coat colours of the e1/e2 or e2/e2 dogs. 

Therefore, we consider e1 and e2 functionally equivalent loss of function alleles. 

Our data should help diagnostic laboratories to provide more accurate genetic testing for 

breeders of Australian Cattle Dogs. We did not observe the e2 allele outside of Australian 

Cattle Dogs. However, additional purebred and mixed-breed dogs should be evaluated to 

determine, if this is truly a breed-specific variant. 

We discovered the presence of another loss of function allele in Huskies, e3, caused by a 2 

bp deletion in the coding sequence of MC1R by two independent approaches. Initially, the 

variant was identified by a candidate gene approach and targeted Sanger sequencing 

(Schmutz and Loechel, 2015). Later on, we found the same variant in whole genome 

sequence data. In Huskies, both e1 and e3 segregate and appear to be functionally 

equivalent. Loss of MC1R function in Huskies leads to an almost completely white coat 

colour. The fact that black and white Huskies are not black and tan suggests that the 

pheomelanin pigmentation in Huskies is extremely pale, which is consistent with the nearly 

white coat colour in MC1R deficient Huskies. 

In conclusion, we identified a non-coding regulatory MC1R promoter variant and an MC1R 

coding deletion as likely causes for the e2 and e3 loss of function alleles. Our findings will 

help to improve genetic testing for coat colours in dogs. 
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Table 1 Association of the MC1R genotypes with cream coat colour in a cohort of 334 

Australian Cattle Dogs. The mutant alleles at MC1R:c.916C>T and Chr5:63,695,679C>G are 

designated e1 and e2, respectively. 

 

MC1R genotype wt/wt wt/e1 wt/e2 e1/e1 e1/e2 e2/e2 

       

Cream (cases, n = 10)) - - - 1 4 5 

Non-cream (controls, n = 324) 264 20 40 - - - 

 

 

 

 

Table 2 Association of the MC1R genotypes with white coat colour in a cohort of 50 Huskies. 

The mutant alleles at MC1R:c.916C>T and MC1R:c.816_817delCT are designated e1 and e3, 

respectively. 

 

MC1R genotype wt/wt wt/e1 wt/e3 e1/e1 e1/e3 e3/e3 

       

White (cases, n = 15) - - - 4 9 2 

Non-white1 (controls, n = 35) 24 1 10 - - - 

1Dogs with a significant proportion of pigmented hair (black, grey, brown, red) were classified as “non-white”. 
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Figures and Legends 

 

 

 

 

Figure 1. Coat colour phenotypes of Australian Cattle Dogs. Blue (A) and red (B) are officially recognized coat 

colours in this breed. (C) A cream coloured Australian Cattle Dog. This colour does not conform to the breed 

standard. 

 

 

 

 

 

 

 

Figure 2. GWAS results. An allelic association study using 10 cream coloured (cases) and 123 red coloured 

Australian Cattle Dogs (controls) showed a single genome-wide significant signal on chromosome 5 with the best 

associated marker located close to the MC1R gene. Inset: The QQ-plot confirms that the actually observed p-

values (shown in black) of the best associated markers are stronger associated with the trait than expected by 

chance (null hypothesis, red line).  
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Figure 3. Details of the MC1R promoter variant. (A) Sequence context of the Chr5:63,695,679C>G variant 

located 430 nucleotides upstream of the ATG start codon of the MC1R gene. Please note that the dog sequence 

is given in the orientation of the MC1R gene (reverse complementary to the genome reference assembly). There 

is moderate sequence conservation between dog, human and mouse. The sequences corresponding to the 

experimentally confirmed human and murine MITF binding sites are highlighted in orange (Adachi et al. 2000; 

Aoki & Moro, 2002). The G at the variable position is conserved in functional mammalian MITF binding sites 

(Aksan & Godin 1998). More details are given in supplementary figure 1. (B) Sanger sequencing 

electropherograms from dogs with the three different genotypes at this variant are shown. 
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Figure 4. Functional confirmation of the regulatory effect. (A) A cream coloured dog with the compound 

heterozygous e1/e2 genotype was selected for the experiment. Both parents of this dog were blue (ASIP 

genotype at/at in all animals of the trio). The genotypes at both MC1R variants are indicated in the pedigree. 

Variant alleles are shown in red. (B) A Sanger sequencing electropherogram of the MC1R:c.916C>T variant on 

genomic DNA of the cream coloured dog shows the expected 1 : 1 ratio between the two alleles (area under the 

peaks). Sanger sequencing of an RT-PCR product derived from skin mRNA with the same primer shows a 1 : 5 

ratio of the peak areas originating from the two different alleles. This indicates a marked downregulation of the 

transcript from the chromosome with the e2 allele. 
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Figure 5. (A) Coat colour phenotype of a Siberian Husky homozygous for the MC1R:c.816_817delCT variant. 

The dog was registered as white, but had a very pale yellow hue. (B) Cosegregation of MC1R loss of function 

alleles with white coat colour in Huskies. White dogs in this pedigree are indicated with filled symbols, non-white 

dogs are represented as open symbols. The white dog shown in (A) was mated to a heterozygous non-white 

female carrying one copy of the e1 allele. The coat colours in the resulting seven puppies showed the expected 

genotype-phenotype correlation. 
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Figure S1. Annotated sequence of the canine MC1R gene 
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Table S4. Genotypes of 334 Australian Cattle Dogs, 50 Huskies, and 628 dogs from different 

breeds at 3 loss of function variants within the MC1R gene. 


