486 research outputs found

    Measuring the equation of state of trapped ultracold bosonic systems in an optical lattice with in-situ density imaging

    Full text link
    We analyze quantitatively how imaging techniques with single-site resolution allow to measure thermodynamical properties that cannot be inferred from time-of-light images for the trapped Bose-Hubbard model. If the normal state extends over a sufficiently large range, the chemical potential and the temperature can be extracted from a single shot, provided the sample is in thermodynamic equilibrium. When the normal state is too narrow, temperature is low but can still be extracted using the fluctuation-dissipation theorem over the entire trap range as long as the local density approximation remains valid, as was recently suggested by Qi Zhou and Tin-Lun Ho [arXiv:0908.3015]. However, for typical present-day experiments, the number of samples needed is of the order of 1000 in order to get the temperature at least 10%10 \% accurate, but it is possible to reduce the variance by 2 orders of magnitude if the density-density correlation length is short, which is the case for the Bose-Hubbard model. Our results provide further evidence that cold gases in an optical lattices can be viewed as quantum analog computers.Comment: 8 pages, 10 figure

    Vacancy supersolid of hard-core bosons on the square lattice

    Full text link
    The ground state of hard-core bosons on the square lattice with nearest and next-nearest neighbor repulsion is studied by Quantum Monte Carlo simulations. A supersolid phase with vacancy condensation and 'star' diagonal ordering is found for filling less than a quarter. At fillings above one quarter, a supersolid phase exists between the star and the stripe crystal at half-filling. No supersolid phase occurs above quarter-filling, if the ground state at half-filling is either a checkerboard crystal or a superfluid. No commensurate supersolid phase is observed.Comment: Replaced with published versio

    Spin and charge dynamics of a quasi-one-dimensional antiferromagnetic metal

    Full text link
    We use quantum Monte Carlo simulations to study a finite-temperature dimensional-crossover-driven evolution of spin and charge dynamics in weakly coupled Hubbard chains with a half-filled band. The low-temperature behavior of the charge gap indicates a crossover between two distinct energy scales: a high-energy one-dimensional (1D) Mott gap due to the umklapp process and a low-energy gap which stems from long-range antiferromagnetic (AF) fluctuations. Away from the 1D regime and at temperature scales above the charge gap, the emergence of a zero-frequency Drude-like feature in the interchain optical conductivity σ⊥(ω)\sigma_{\perp}(\omega) implies the onset of a higher-dimensional metal. In this metallic phase, enhanced quasiparticle scattering off finite-range AF fluctuations results in incoherent single-particle dynamics. The coupling between spin and charge fluctuations is also seen in the spin dynamical structure factor S(q,ω)S({\pmb q},\omega) displaying damped spin excitations (paramagnons) close to the AF wave-vector q=(π,π){\pmb q}=(\pi,\pi) and particle-hole continua near 1D momentum transfers spanning quasiparticles at the Fermi surface. We relate our results to the charge deconfinement in quasi-1D organic Bechgaard-Fabre salts.Comment: 14+ pages, 13 figures; new Fig. 5c, added Fig.

    Influence of the trap shape on the superfluid-Mott transition in ultracold atomic gases

    Full text link
    The coexistence of superfluid and Mott insulator, due to the quadratic confinement potential in current optical lattice experiments, makes the accurate detection of the superfluid-Mott transition difficult. Studying alternative trapping potentials which are experimentally realizable and have a flatter center, we find that the transition can be better resolved, but at the cost of a more difficult tuning of the particle filling. When mapping out the phase diagram using local probes and the local density approximation we find that the smoother gradient of the parabolic trap is advantageous.Comment: 5 pages, 6 figure

    Optimal Monte Carlo Updating

    Get PDF
    Based on Peskun's theorem it is shown that optimal transition matrices in Markov chain Monte Carlo should have zero diagonal elements except for the diagonal element corresponding to the largest weight. We will compare the statistical efficiency of this sampler to existing algorithms, such as heat-bath updating and the Metropolis algorithm. We provide numerical results for the Potts model as an application in classical physics. As an application in quantum physics we consider the spin 3/2 XY model and the Bose-Hubbard model which have been simulated by the directed loop algorithm in the stochastic series expansion framework.Comment: 6 pages, 5 figures, replaced with published versio

    Complete classification of purely magnetic, non-rotating and non-accelerating perfect fluids

    Full text link
    Recently the class of purely magnetic non-rotating dust spacetimes has been shown to be empty (Wylleman, Class. Quant. Grav. 23, 2727). It turns out that purely magnetic rotating dust models are subject to severe integrability conditions as well. One of the consequences of the present paper is that also rotating dust cannot be purely magnetic when it is of Petrov type D or when it has a vanishing spatial gradient of the energy density. For purely magnetic and non-rotating perfect fluids on the other hand, which have been fully classified earlier for Petrov type D (Lozanovski, Class. Quant. Grav. 19, 6377), the fluid is shown to be non-accelerating if and only if the spatial density gradient vanishes. Under these conditions, a new and algebraically general solution is found, which is unique up to a constant rescaling, which is spatially homogeneous of Bianchi type VI0VI_0, has degenerate shear and is of Petrov type I(M∞)M^\infty) in the extended Arianrhod-McIntosh classification. The metric and the equation of state are explicitly constructed and properties of the model are briefly discussed. We finally situate it within the class of normal geodesic flows with degenerate shear tensor.Comment: 12 pages; introduction partly rewritten, notation made more clear, table of results adde

    Silent universes with a cosmological constant

    Full text link
    We study non-degenerate (Petrov type I) silent universes in the presence of a non-vanishing cosmological constant L. In contrast to the L=0 case, for which the orthogonally spatially homogeneous Bianchi type I metrics most likely are the only admissible metrics, solutions are shown to exist when L is positive. The general solution is presented for the case where one of the eigenvalues of the expansion tensor is 0.Comment: 11 pages; several typos corrected which were still present in CGQ version; minor change

    Electromagnetic and Gravitational Invariants

    Get PDF
    The curvature invariants have been subject of recent interest in the context of the experimental detection of the gravitomagnetic field, namely due to the debate concerning the notions of "extrinsic" and "intrinsic" gravitomagnetism. In this work we explore the physical meaning of the curvature invariants, dissecting their relationship with the gravitomagnetic effects

    Electromagnetic and Gravitational Invariants

    Get PDF
    The curvature invariants have been subject of recent interest in the context of the experimental detection of the gravitomagnetic field, namely due to the debate concerning the notions of "extrinsic" and "intrinsic" gravitomagnetism. In this work we explore the physical meaning of the curvature invariants, dissecting their relationship with the gravitomagnetic effects

    Electromagnetic and Gravitational Invariants

    Get PDF
    The curvature invariants have been subject of recent interest in the context of the experimental detection of the gravitomagnetic field, namely due to the debate concerning the notions of "extrinsic" and "intrinsic" gravitomagnetism. In this work we explore the physical meaning of the curvature invariants, dissecting their relationship with the gravitomagnetic effects
    • …
    corecore