4 research outputs found

    Phosphonium polymers for gene delivery

    Get PDF
    Phosphonium salt-containing polymers have very recently started to emerge as attractive materials for the engineering non-viral gene delivery systems. Compared to more frequently utilised ammonium-based polymers, some of these materials can enhance binding of nucleic acid at lower polymer concentration, and mediate good transfections efficiency, with low cytotoxicity. However, for years one of the main hurdles for their widespread application has been the lack of general routes for their synthesis. To date a range of polymerisation techniques have been explored, with the majority of them focussing on radical polymerisation, especially controlled radical polymerisation (CRP) techniques – ATRP, NMP and RAFT polymerisation - both by polymerisation of phosphonium monomers or by post-polymerisation modification of polymer intermediates. This review article aims at discussing key differences and similarities between phosphonium-and other analogous cations, how these affect binding to polynucleotides, and will provide an overview of the phosphonium polymer systems that have been utilised for gene delivery

    Phosphonium polymethacrylates for siRNA delivery: effect of polymer and RNA structural parameters on polyplex assembly and gene knockdown

    Get PDF
    Synthetic polymers containing quaternary phosphonium salts are an emerging class of materials for the delivery of oligo/polynucleotides. In this work, cationic phosphonium salt-containing polymethacrylates –and their corresponding ammonium analogues– were synthesized by RAFT polymerization. Both the nature of the charged heteroatom (N vs. P) and the length of the spacer separating the cationic units along the polymer backbone (oxyethylene vs. trioxyethylene) were systematically varied. Polymers efficiently bound siRNA at N+/P- or P+/P- ratios of 2 and above. At a 20:1 ratio, small polyplexes (Rh: 4-15 nm) suitable for cellular uptake were formed that displayed low cytotoxicity. Whilst siRNA polyplexes from both ammonium and phosphonium polymers were efficiently internalised by GFP-expressing 3T3 cells, no knockdown of GFP expression was observed. However, 65% Survivin gene knockdown was observed when short interfering RNA (siRNA) was replaced with novel, multimerised long interfering liRNA (liRNA) in HeLa cells, demonstrating the importance of RNA macromolecular architecture on RNA-mediated gene silencing

    Efficient binding, protection, and self-release of dsRNA in soil by linear and star cationic polymers

    Get PDF
    Double stranded RNA (dsRNA) exhibits severe degradation within 3 days in live soil, limiting its potential application in crop protection. Herein we report the efficient binding, protection, and self-release of dsRNA in live soil through the usage of a cationic polymer. Soil stability assays show that linear poly(2-(dimethylamino)ethyl acrylate) can delay the degradation of dsRNA by up to 1 week while the star shaped analogue showed an increased stabilization of dsRNA by up to 3 weeks. Thus, the architecture of the polymer can significantly affect the lifetime of dsRNA in soil. In addition, the hydrolysis and dsRNA binding and release profiles of these polymers were carefully evaluated and discussed. Importantly, hydrolysis could occur independently of environmental conditions (e.g., different pH, different temperature) showing the potential for many opportunities in agrochemicals where protection and subsequent self-release of dsRNA in live soil is required

    Efficient Binding, Protection, and Self-Release of dsRNA in Soil by Linear and Star Cationic Polymers

    No full text
    Double stranded RNA (dsRNA) exhibits severe degradation within 3 days in live soil, limiting its potential application in crop protection. Herein we report the efficient binding, protection, and self-release of dsRNA in live soil through the usage of a cationic polymer. Soil stability assays show that linear poly­(2-(dimethylamino)­ethyl acrylate) can delay the degradation of dsRNA by up to 1 week while the star shaped analogue showed an increased stabilization of dsRNA by up to 3 weeks. Thus, the architecture of the polymer can significantly affect the lifetime of dsRNA in soil. In addition, the hydrolysis and dsRNA binding and release profiles of these polymers were carefully evaluated and discussed. Importantly, hydrolysis could occur independently of environmental conditions (e.g., different pH, different temperature) showing the potential for many opportunities in agrochemicals where protection and subsequent self-release of dsRNA in live soil is required
    corecore