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ABSTRACT: Double stranded RNA (dsRNA) exhibits severe degradation
within 3 days in live soil, limiting its potential application in crop protection.
Herein we report the efficient binding, protection, and self-release of dsRNA in
live soil through the usage of a cationic polymer. Soil stability assays show that
linear poly(2-(dimethylamino)ethyl acrylate) can delay the degradation of
dsRNA by up to 1 week while the star shaped analogue showed an increased
stabilization of dsSRNA by up to 3 weeks. Thus, the architecture of the polymer S SEHES 2 A
can significantly affect the lifetime of dsRNA in soil. In addition, the hydrolysis Binding, protection and release of dsRNA in soil
and dsRNA binding and release profiles of these polymers were carefully

evaluated and discussed. Importantly, hydrolysis could occur independently of environmental conditions (e.g, different pH,
different temperature) showing the potential for many opportunities in agrochemicals where protection and subsequent self-
release of dsRNA in live soil is required.

NA interference (RNAI) is a naturally occurring process, ing for the application to large scale agrochemicals.”'” A

where double stranded RNA (dsRNA) can regulate potential alternative route for delivering dsRNA to the plant
protein expression.' > The use of dsRNA in the agrochemical could be via soil, followed by uptake through the roots, or
industry is desirable as selected pests can be specifically ingestion by a pest. It has been illustrated that root cells can
targeted, while eliminating the detrimental effects of existing absorb dsRNA and RNAi can be t1riggered,'13’14 however,
chemical pesticides on nontarget species.” This technique is applying this process to soil creates additional challenges as soil
advantageous as an alternative method of chemical control to contains many chemicals (salts, minerals and nutrients),
help mitigate the development of resistance by natural enzymes and living (micro)organisms, which can interact and
selection and also minimizes potential environmental impact vastly increase the rate of degradation of RNA."”™"” A method
associated with current pest control methods.” However, the of protecting dsRNA and increasing lifetime in soil would be
effectiveness of RNAI is limited by the very short lifetime of highly desirable, yet no efforts on stabilizing dsRNA in soil
dsRNA which is susceptible to degradation under environ- have been reported.
mental conditions, with numerous pathways reported.6 Cationic polymers have been extensively employed to
Ribonucleases (RNases), for example are enzymes which protect RNA and DNA from degradation with numerous
degrade RNA into smaller fragments, and are not only found natural and synthetic examplesls'l) including amine function-
within the environment, but also in the air, dust and on alized polysaccharides,zo poly(L—lysine),ZI poly-
surfaces. This inherent instability and short half-life of dsRNA (amidoamines),”* poly(amino-co-ester)s,”*" 2?01}"
when in contact with these enzymes represents a serious ((dimethylamino)ethyl rznéethacrylate) (PDMAEMA),” and
challenge in applying RNAi to agrochemicals. Although most poly(ethylene imines).” Although these polymers can
of the reports focus on delivering dsRNA to insects through efficiently bind to RNA they are however incapable of release
microinjection into the hemolymph or feeding,””* RNAi has due to the very high positive charge density. Release must
also been shown to be effective in knocking down insect genes
in plants, with delivery on to the surface of a leaf prior to insect Received: June 2, 2018
feeding, or through in vivo dsRNA production within the Accepted: July 9, 2018
chloroplast.”~"" Nevertheless, all these methods are challeng- Published: July 12, 2018
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Scheme 1. Schematic Representation of the Complexation of Star PDMAEA to dsRNA and Subsequent Release of dsRNA and

the Small Molecule 2-(Dimethylamino)ethanol
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Figure 1. Effect of (a) architecture, (b) molecular weight, (c) temperature, and (d) pH on the rate of hydrolysis of 6200 g mol™" star PDMAEA.

occur to allow the dsRNA to become available so to trigger
RNAi>" Considerable efforts have been directed at over-
coming this problem, in particular, poly(2-(dimethylamino)-
ethyl acrylate) (PDMAEA) has been reported as having a self-
catalyzed hydrolysis property, with autodegradation to poly-
(acrylic acid) and 2-(dimethylamino)ethanol when in aqueous
solution.”*° In addition, PDMAEA has a high transfection
efficiency into HeLa cells when complexed with RNA, can
facilitate complete release of RNA and exhibits very low

910

toxicity.””>' >’ We thus envisaged that PDMAEA could be a
good candidate to protect the dsRNA in soil and delay
degradation prior to release.

Herein we study for the first time the use of a cationic
polymer to increase the lifetime of dsRNA in soil. The effect of
the polymerbackbone (poly(acrylate) vs poly-
(methacrylate)),”* polymer architecture (linear vs star), and
the soil environment (pH and tempera-ture) on the rate of
hydrolysis is thoroughly investigated and discussed.
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Figure 2. Gel retardation assay with dsRNA and linear/star PDMAEA. Polymer/dsRNA complexes were formed in RNase free water at increasing
N*/P~ ratio (0.2,0.5,1,2,3,4,5,6,7, 8,9, 10) and evaluated after 0.5, 2, 4, 6, 24, and 72 h. Polymer/dsRNA ratios are expressed as molar ratio
between polymer ammonium (N+) cationic repeating units and the anionic phosphate groups (P~) on dsRNA. Samples were incubated at room

temperature and loaded onto a 2% w/v agarose gel (100 V, 30 min).

The controlled polymerization of DMAEA is reported to be
challenging by all reversible deactivation radical polymerization
(RDRP) methods reported to date, mainly due to the high
reactivity of the tertiary amine functionality that leads to a large
extent of termination and side reactions.” In order to
circumvent this, the polymerizations of DMAEA are usually
stopped at low conversions (~30%) followed by purification
and storage of the materials in IPA prior to further use. Under
previously reported conditions, the Cu(0)-mediated RDRP**
of both linear and star PDMAEA were attempted airninxg for
molecular weights in the range of 5000—6000 g mol™.>"*" Tt is
noted that high molecular weight analogues were not targeted
as low molecular weight polymers (<10000 g mol™") have been
widely reported to exhibit enhanced solubility when complexed
to genetic material and possess much lower toxicity.”” As such,
well-defined linear (M, = 5600 g mol™!, D = 1.18) and star
PDMAEA (M, = 6200 g mol™!, D = 1.14) were obtained
exhibiting good agreement between the theoretical and
experimental values and narrow molecular weight distributions
(Figures S1—S3 and Table S1). We also aimed to synthesize
the polymethacrylate ((poly(2-(dimethylamino)ethyl metha-

crylate) PDMAEMA) analogue of PDMAEA, as it is a
nonhydrolyzable in aqueous solution so could be utilized as
a negative control. However, under identical conditions, the
synthesis of PDMAEMA was unsuccessful as evident by the
significant broadening of the molecular weight distributions
(Figure S4 and Table S2). In order to circumvent this, methyl
a-phenylacetate (MBPA) and N,N,N’,N”,N”-pentamethyldie-
thylenetriamine (PMDETA) were instead utilized as the
initiator and ligand respectively (as opposed to ethyl-a-
bromoisobutyrate (EBiB) and tris[2-(dimethylamino)ethyl]-
amine (MegTren) that were used for the linear acrylate
polymers).”” With this optimization, well-defined linear
PDMAEMA with low dispersity was obtained (M, = 6000 g
mol™', D = 1.06). Importantly, this polymerization reached full
monomer conversion (>99% conversion by 'H NMR) without
compromising the molecular weight distribution (Figure S5
and Table S3). To the best of our knowledge, this is the first
report of controlled polymerization of DMAEMA via Cu(0)-
wire RDRP.

All polymers (linear PDMAEA, linear PDMAEMA, star
PDMAEA) were subsequently dissolved into aqueous

DOI: 10.1021/acsmacrolett.8b00420
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Figure 3. MD simulation snapshots of DNA/PDMAEA complexation for both linear and star polymer during various stages of wrapping process.
Simulation shows significant bending of the double helix with the star polymer complex. DNA and polymers are shown in the surface
representation in VMD: green and yellow are dsRNA; red, blue, and purple are polymers.

solutions and the extent of the hydrolysis measured via 'H
NMR over 50 days.”” This prolonged time frame is necessary
for potential soil applications and previous hydrolysis studies
are limited to less than 10 days. The nature of the polymer
backbone was initially investigated (methacrylate versus
acrylate) with PDMAEMA showing negligible hydrolysis, if
any, over the whole-time. (Schemes 1, S1, and S2) This is
consistent with previous studies that report the methacrylate
analogue to be nonhydrolyzable.*' In contrast, upon switching
from the polymethacrylate to the polyacrylate analogue (linear
PDMAEA), hydrolysis occurred rapidly with 11% of the
polymer being hydrolyzed within 30 min, followed by a
noticeable reduction in the degradation percentage with 25%
of hydrolysis in 12 h and 50% in 3 days. The rate of hydrolysis
was further decreased reaching 74% over the total period of 50
days. The hydrolysis study was then repeated for the star
PDMAEA demonstrating also rapid hydrolysis with a slightly
lower degradation percentage than for the linear analogue
(Figure 1a and Tables S4 and SS). It is noted that although the
architecture seems to have only a small effect on the rate of
hydrolysis, the linear polymers reproducibly hydrolyze slightly
faster than the star polymers, possibly due to the greater
density of cationic nitrogen moieties at the core of the star
polymer that are less accessible to water molecules. In order to
study the effect of small variations on the molecular weight
within these materials, a lower molecular weight star polymer
was also synthesized and tested (M, = 3200 g mol™!, D =
1.12). This experiment revealed a similar rate of hydrolysis
when compared to the higher molecular weight star polymer
(63% versus 62%). (Figure 1b and Table S6) Thus, changing
the molecular weight or the architecture has limited effect on
the rate of hydrolysis. This advantage allows the synthesis of
PDMAEA with variable molecular weight from batch to batch,
while maintaining the reproducible hydrolysis property that is
needed for quality control.

The effect of the pH on the hydrolysis was subsequently
investigated using star PDMAEA as a model polymer as all
polymers, except the PDMAEMA, exhibit comparable
hydrolysis rates (Figure lc and Table S7). The pH of soil
can vary significantly depending on the area and the
environment with typical values being between 3 and 10.*
However, in the presence of acid rain and/or inorganic
fertilizers even lower pH can be observed in the field.”
Initially, hydrolysis studies were carried out at natural pH (7.2)
and also at pH’s 5.5 and 10.1 (the boundaries of physiological
pH range). Near identical hydrolysis profiles were observed at
all three pHs, demonstrating similar behavior independent of
environmental conditions. These results are in agreement with
values previously reported for linear PDMAEA.>**’ With lower
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pH being common in soil, a further hydrolysis study was
carried out at pH ~ 1.5. Interestingly, a near identical rate of
hydrolysis was observed and thus confirming that the rate of
hydrolysis is not affected by pH changes (pH 1.5—10.1).

Another factor of importance is the effect of temperature on
the degree of hydrolysis, with significant variations within
different countries or different seasons. Hence, the hydrolysis
at three different temperatures was tested (8, 20, and 37 °C)
(Figure 1d and Table S8). The rate of hydrolysis slightly
increased upon increasing the temperature, however, the
difference in hydrolysis rate between 8 and 37 °C was only 4%
at the end of the S0th day, thus showing relatively similar
characteristics under significant temperature changes.

To be applicable as a pesticide, dSRNA must bind and
subsequently be released into the soil, so it can be absorbed by
the plant root. With previous studies limited to the effect of a
few polymer properties and environmental factors on the
strength of complexation, we further investigated the effect of
architecture on the rate of release utilizing gel electrophoresis
assays (Figures 2 and S6).*** Polymer/dsRNA complexes
(both linear and star) were incubated in RNase free water at
increasing N*/P~ ratios (0.2—10). Then, 0.5 h after
incubation, the dsSRNA remains loaded within the pockets of
the gel (the top band in Figures 2 and S6), indicating strong
complexation between all polymers (linear PDMAEA, linear
PDMAEMA, star PDMAEA) and dsRNA at an N*/P~ ratio of
2 or greater. In comparison to the linear polymer, the star
PDMAEA illustrated much more complete binding, as shown
by dark top band and no smearing in Figure 2 (right). At lower
N*/P” ratios full binding did not take place as there were
insufficient positive charges to bind all of the dsRNA,
illustrated by the free dsRNA migrating through the gel. We
next examined the ability of these complexes to release dsRNA,
as only free dsRNA can be active and most complexes cannot
self-release the dsRNA. As expected, the non-hydrolyzable
PDMAEMA exhibited no release of dsRNA even after 21 days
as no noticeable change in the gel electrophoresis assay was
observed (Figure S6).

On the contrary, for linear PDMAEA, smearing could be
observed for all N*/P~ ratios after 30 min (Figure 2 left)
suggesting that binding had occurred, and that the partial
release had already begun. It is not possible to gain an earlier
measurement, as 30 min is the time taken to acquire a gel. This
is in contrast to the star PDMAEA, which showed no release
until after 4 h for N¥/P~ ratios at 4 or greater. Taken
altogether this data demonstrates that the star polymer has a
much slower release profile than the linear analogue, with the
nearly full release of the dsRNA having occurred for the linear
polymer after 24 h, but still some level of binding for the star

DOI: 10.1021/acsmacrolett.8b00420
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Figure 4. Evaluation of (a) naked dsRNA, (b) linear PDMAEA/dsRNA complex, and (c) star PDMAEA dsRNA complex (200 xL) in no soil,
baked soil, and live soil (0.5 g). All polymer/dsRNA complexes were formed incubated at room temperature for different time periods (d = day 0,
3, 7, 10, 14, 21). dsRNA was extracted from soil and samples loaded onto a 2% w/v agarose gel (100 V, 30 min) for subsequent analysis.

polymer was evident. Detailed binding and conformation
changes of dSSRNA-PDMAEA complexation were subsequently
investigated using all-atom molecular dynamics (MD)
simulation (Figure 3). Previous reports have shown that the
presence of cationic functionalized nanoparticles result in
significant bending of DNA.*® However, there is currently no
comprehensive study on the binding of cationic polymers of
different architecture to dsDNA. In our simulation, both linear
and star PDMAEA (DP40) are strongly bound to the dsDNA
and had a profound impact on DNA conformation. The star
polymer, however, is more effective in bending and wrapping
on the dsDNA, thus a more compact DNA/polymers complex
is formed in comparison with the linear one. This is consistent
with the gel electrophoresis data, as there is a lower surface
area that can potentially come into contact with water or
RNases, so better protection and slower release are illustrated.

Another important observation from the gel electrophoresis
data, was that the N*/P~ ratio has a significant effect on the
rate of release with increasing the amount of polymer resulting
in a much slower rate. Full release of dsRNA is a desired
attribute for cationic polymers and is illustrated for all N*/P~
ratios of both the linear and the star PDMAEA. These
polymers are therefore potentially good candidates for soil
stability studies, so polyplexes formed from both the linear and
star cationic polymers (N*/P~ ratios of S) were subsequently
investigated (Figure 4). Soil stability assays were conducted by
adding samples of polyplex to either live soil or baked soil, with
samples incubated for up to 21 days. At each selected time
point, TRI Reagent (a mixture of phenol and guanidine
thiocyanate) was added which inhibits any RNase activity,
preventing subsequent degradation of dsRNA. This also
facilitates the extraction of dsRNA from the soil and
importantly separation from DNA and proteins. On the
addition of chloroform followed by centrifugation, three phases
are formed: an aqueous phase containing RNA, an interphase
containing DNA, and an organic phase containing proteins.Ar9
Subsequent enrichment utilizing a lithium chloride procedure
allowed for analysis via gel electrophoresis (Materials and
Methods in the Supporting Information).” Initially, some
important control experiments were conducted. In the absence
of soil (RNase free solution) the naked dsRNA, the linear
PDMAEA/dsRNA complex and the star PDMAEA/dsRNA
complex showed no degradation of dsRNA (Figure 4). This is
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to be expected as in the absence of soil there are no bacteria or
enzymes to facilitate degradation. In contrast, when the naked
dsRNA was tested in live soil, the intensity of the dsRNA band
was greatly reduced after 3 days (Figure 4), suggesting severe
degradation of dsRNA. Conversely, when the linear PDMAEA
was complexed to the dsRNA in the live soil, distinct bands
could be observed after 3 and 7 days, thus clearly showing that
complexation to linear PDMAEA was delaying the degradation
of dsRNA in soil for around 4 days. However, after 10 days, the
dsRNA was completely degraded. Remarkably, when the star
PDMAEA was complexed to the dsRNA in live soil the
degradation was further delayed with a strong band being
observed even after 14days while a much weaker band could
still be observed even after 21 days. A further control
experiment was undertaken, with the naked dsRNA, the linear
PDMAEA/dsRNA complex and the star PDMAEA/dsRNA
complex being tested in prebaked soil (240 °C). Having
stopped the activity of bacteria and enzymes, no degradation
took place confirming that indeed these organisms/enzymes
are the only factor responsible for the live soil degradation. As
such, it can be concluded that both linear and star PDMAEA
can efficiently protect from dsRNA from degradation and
extend the lifetime, but importantly the star/dsRNA complex
exhibits significantly longer protection when compared to the
linear analogue.

In summary, we have identified PDMAEA as a successful
polymer for the effective binding and self-release of dsRNA in
soil. Both linear and star PDMAEA were successfully
synthesized via Cu(0)-RDRP, and the hydrolysis profile of
these materials was demonstrated to be independent of
environmental conditions thus highlighting the robustness of
these candidates. Interestingly the architecture was shown to
have a significant effect on binding and release, with the star
showing a much slower release rate in comparison to the linear
polymer. When applied to soil, star PDMAEA protected
dsRNA, illustrating a significantly greater stabilization time of 3
weeks compared to naked dsRNA, which degraded after 3
days. The enhanced stability of dsRNA in soil by complexation
to these polymers, followed by a unique self-release mechanism
creates many new opportunities for using RNA interference in
agrochemical applications.
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