5,175 research outputs found
Recommended from our members
The solar influence on the probability of relatively cold UK winters in the future
Recent research has suggested that relatively cold UK winters are more common when solar activity is low (Lockwood et al 2010 Environ. Res. Lett. 5 024001). Solar activity during the current sunspot minimum has fallen to levels unknown since the start of the 20th century (Lockwood 2010 Proc. R. Soc. A 466 303â29) and records of past solar variations inferred from cosmogenic isotopes (Abreu et al 2008 Geophys. Res. Lett. 35 L20109) and geomagnetic activity data (Lockwood et al 2009 Astrophys. J. 700 937â44) suggest that the current grand solar maximum is coming to an end and hence that solar activity can be expected to continue to decline. Combining cosmogenic isotope data with the long record of temperatures measured in central England, we estimate how solar change could influence the probability in the future of further UK winters that are cold, relative to the hemispheric mean temperature, if all other factors remain constant. Global warming is taken into account only through the detrending using mean hemispheric temperatures. We show that some predictive skill may be obtained by including the solar effect
Recommended from our members
Oscillations in the open solar magnetic flux with a period of 1.68 years: imprint on galactic cosmic rays and implications for heliospheric shielding
An understanding of how the heliosphere modulates galactic cosmic ray (GCR) fluxes and spectra is important, not only for studies of their origin, acceleration and propagation in our galaxy, but also for predicting their effects (on technology and on the Earthâs environment and organisms) and for interpreting abundances of cosmogenic isotopes in meteorites and terrestrial reservoirs. In contrast to the early interplanetary measurements, there is growing evidence for a dominant role in GCR shielding of the total open magnetic flux, which emerges from the solar atmosphere and enters the heliosphere. In this paper, we relate a strong 1.68- year oscillation in GCR fluxes to a corresponding oscillation in the open solar magnetic flux and infer cosmic-ray propagation paths confirming the predictions of theories in which drift is important in modulating the cosmic ray flux
Recommended from our members
Excess open solar magnetic flux from satellite data: 2. A survey of kinematic effects
We investigate the âflux excessâ effect, whereby open solar flux estimates from spacecraft increase with increasing heliocentric distance. We analyze the kinematic effect on these open solar flux estimates of large-scale longitudinal structure in the solar wind flow, with particular emphasis on correcting estimates made using data from near-Earth satellites. We show that scatter, but no net bias, is introduced by the kinematic âbunching effectâ on sampling and that this is true for both compression and rarefaction regions. The observed flux excesses, as a function of heliocentric distance, are shown to be consistent with open solar flux estimates from solar magnetograms made using the potential field source surface method and are well explained by the kinematic effect of solar wind speed variations on the frozen-in heliospheric field. Applying this kinematic correction to the Omni-2 interplanetary data set shows that the open solar flux at solar minimum fell from an annual mean of 3.82 Ă 1016 Wb in 1987 to close to half that value (1.98 Ă 1016 Wb) in 2007, making the fall in the minimum value over the last two solar cycles considerably faster than the rise inferred from geomagnetic activity observations over four solar cycles in the first half of the 20th century
Recommended from our members
Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass
We use the third perihelion pass by the Ulysses spacecraft to illustrate and investigate the âflux excessâ effect, whereby open solar flux estimates from spacecraft increase with increasing heliocentric distance. We analyze the potential effects of small-scale structure in the heliospheric field (giving fluctuations in the radial component on timescales smaller than 1 h) and kinematic time-of-flight effects of longitudinal structure in the solar wind flow. We show that the flux excess is explained by neither very small-scale structure (timescales 1 day) solar wind speed variations on the frozen-in heliospheric field. We show that averaging over an interval T (that is long enough to eliminate structure originating in the heliosphere yet small enough to avoid cancelling opposite polarity radial field that originates from genuine sector structure in the coronal source field) is only an approximately valid way of allowing for these effects and does not adequately explain or account for differences between the streamer belt and the polar coronal holes
The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory
The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented
Recommended from our members
Texas Business Review, May 1975
The Business Situation in Texas; Nuclear Power in Texas 1954-1975; Texas ConstructionBureau of Business Researc
Latitudinal gradients of cosmic rays and the polarity reversal of the heliospheric magnetic field: A preliminary evaluation
Within the statistical limits imposed by the currently available data and the noise inherent in the determination of the latitudinal gradient, no evidence for the expected change in the latitudinal gradient from pre-1980 to post-1980 epochs can be found. In addition, the rigidity dependence of the gradient appears to be the same in the two epochs. Thus, no evidence is found for a sensitivity of the latitudinal gradient to the polarity of the largescale heliospheric magnetic field such as has been predicted by models incorporating particle drifts
Recommended from our members
The low-latitude boundary layer: Application of ISTP advances to past data
The destruction of the four Cluster craft was a major loss to the planned ISTP effort, of which studies of the magnetopause and low-latitude boundary layer (LLBL) were an important part. While awaiting the re-flight mission, Cluster-II, we have been applying advances in our understanding made using other ISTP craft (like Polar and Wind) and using ground-based facilities (in particular the EISCAT incoherent scatter radars and the SuperDARN HF coherent radars) to measurements of the LLBL made in 1984 and 1985 by the AMPTE-UKS and -IRM spacecraft pair. In particular, one unexplained result of the AMPTE mission was that the electron characteristics could, in nearly all cases, order independent measurements near the magnetopause, such as the magnetic field, ion temperatures and the plasma flow. Studies of the cusp have shown that the precipitation is ordered by the time-elapsed since the field line was opened by reconnection. This insight has allowed us to reanalyse the AMPTE data and show that the ordering by the transition parameter is also due to the variation of time elapsed since reconnection, with the important implication that reconnection usually coats most of the dayside magnetopause with at least some newly-opened field lines. In addition, we can use the electron characteristics to isolate features like RDs, slow-mode shocks and slow-mode expansion fans. The ion characteristics can be used to compute the reconnection rate. We here retrospectively apply these new techniques, developed in the ISTP era, to a much-studied flux transfer event observed by the AMPTE satellites. As a result, we gain new understanding of its cause and structure
Recommended from our members
Predicting space climate change
The recent decline in the open magnetic flux of the Sun heralds the end of the Grand Solar Maximum (GSM) that has persisted throughout the space age, during which the largestâfluence Solar Energetic Particle (SEP) events have been rare and Galactic Cosmic Ray (GCR) fluxes have been relatively low. In the absence of a predictive model of the solar dynamo, we here make analogue forecasts by studying past variations of solar activity in order to evaluate how longâterm change in space climate may influence the hazardous energetic particle environment of the Earth in the future. We predict the probable future variations in GCR flux, nearâEarth interplanetary magnetic field (IMF), sunspot number, and the probability of large SEP events, all deduced from cosmogenic isotope abundance changes following 24 GSMs in a 9300âyear record
The Origin of Enhanced Activity in the Suns of M67
We report the results of the analysis of high resolution photospheric line
spectra obtained with the UVES instrument on the VLT for a sample of 15
solar-type stars selected from a recent survey of the distribution of H and K
chromospheric line strengths in the solar-age open cluster M67. We find upper
limits to the projected rotation velocities that are consistent with solar-like
rotation (i.e., v sini ~< 2-3 km/s) for objects with Ca II chromospheric
activity within the range of the contemporary solar cycle. Two solar-type stars
in our sample exhibit chromospheric emission well in excess of even solar
maximum values. In one case, Sanders 1452, we measure a minimum rotational
velocity of vsini = 4 +/- 0.5 km/s, or over twice the solar equatorial
rotational velocity. The other star with enhanced activity, Sanders 747, is a
spectroscopic binary. We conclude that high activity in solar-type stars in M67
that exceeds solar levels is likely due to more rapid rotation rather than an
excursion in solar-like activity cycles to unusually high levels. We estimate
an upper limit of 0.2% for the range of brightness changes occurring as a
result of chromospheric activity in solar-type stars and, by inference, in the
Sun itself. We discuss possible implications for our understanding of angular
momentum evolution in solar-type stars, and we tentatively attribute the rapid
rotation in Sanders 1452 to a reduced braking efficiency.Comment: accepted by Ap
- âŠ