35 research outputs found

    Applicability of in vivo staging of regional amyloid burden in a cognitively normal cohort with subjective memory complaints: the INSIGHT-preAD study.

    Get PDF
    BACKGROUND:Current methods of amyloid PET interpretation based on the binary classification of global amyloid signal fail to identify early phases of amyloid deposition. A recent analysis of 18F-florbetapir PET data from the Alzheimer's disease Neuroimaging Initiative cohort suggested a hierarchical four-stage model of regional amyloid deposition that resembles neuropathologic estimates and can be used to stage an individual's amyloid burden in vivo. Here, we evaluated the validity of this in vivo amyloid staging model in an independent cohort of older people with subjective memory complaints (SMC). We further examined its potential association with subtle cognitive impairments in this population at elevated risk for Alzheimer's disease (AD). METHODS:The monocentric INSIGHT-preAD cohort includes 318 cognitively intact older individuals with SMC. All individuals underwent 18F-florbetapir PET scanning and extensive neuropsychological testing. We projected the regional amyloid uptake signal into the previously proposed hierarchical staging model of in vivo amyloid progression. We determined the adherence to this model across all cases and tested the association between increasing in vivo amyloid stage and cognitive performance using ANCOVA models. RESULTS:In total, 156 participants (49%) showed evidence of regional amyloid deposition, and all but 2 of these (99%) adhered to the hierarchical regional pattern implied by the in vivo amyloid progression model. According to a conventional binary classification based on global signal (SUVRCereb = 1.10), individuals in stages III and IV were classified as amyloid-positive (except one in stage III), but 99% of individuals in stage I and even 28% of individuals in stage II were classified as amyloid-negative. Neither in vivo amyloid stage nor conventional binary amyloid status was significantly associated with cognitive performance in this preclinical cohort. CONCLUSIONS:The proposed hierarchical staging scheme of PET-evidenced amyloid deposition generalizes well to data from an independent cohort of older people at elevated risk for AD. Future studies will determine the prognostic value of the staging approach for predicting longitudinal cognitive decline in older individuals at increased risk for AD

    Structural Classification of Wild Boar (Sus scrofa) Vocalizations.

    Get PDF
    Determining whether a species' vocal communication system is graded or discrete requires definition of its vocal repertoire. In this context, research on domestic pig (Sus scrofa domesticus) vocalizations, for example, has led to significant advances in our understanding of communicative functions. Despite their close relation to domestic pigs, little is known about wild boar (Sus scrofa) vocalizations. The few existing studies, conducted in the 1970s, relied on visual inspections of spectrograms to quantify acoustic parameters and lacked statistical analysis. Here, we use objective signal processing techniques and advanced statistical approaches to classify 616 calls recorded from semi-free ranging animals. Based on four spectral and temporal acoustic parameters-quartile Q25, duration, spectral flux, and spectral flatness-extracted from a multivariate analysis, we refine and extend the conclusions drawn from previous work and present a statistically validated classification of the wild boar vocal repertoire into four call types: grunts, grunt-squeals, squeals, and trumpets. While the majority of calls could be sorted into these categories using objective criteria, we also found evidence supporting a graded interpretation of some wild boar vocalizations as acoustically continuous, with the extremes representing discrete call types. The use of objective criteria based on modern techniques and statistics in respect to acoustic continuity advances our understanding of vocal variation. Integrating our findings with recent studies on domestic pig vocal behavior and emotions, we emphasize the importance of grunt-squeals for acoustic approaches to animal welfare and underline the need of further research investigating the role of domestication on animal vocal communication

    Limitations of PCR detection of filarial DNA in human stools from subjects non-infected with soil-transmitted helminths

    Get PDF
    The standard techniques for diagnosis of human filariasis are the microscopic examination of blood smears or skin biopsies, which are relatively invasive and poorly sensitive at low levels of infection. Recently, filarial DNA has been detected in fecal samples from non-human primates in Central Africa. The aim of this study was to demonstrate proof-of-concept of a non-invasive molecular diagnosis technique for human filariasis by targeting fragments of 12S rDNA, Cox1, ITS1 and LL20-15kDa ladder antigen-gene by conventional PCR in DNA extracted from stool samples of 52 people infected with Mansonella perstans and/or Loa loa. Of these, 10 patients were infected with soil-transmitted helminths (Trichuris trichiura and/or Ascaris lumbricoides), and none were positive for Necator americanus. Interestingly, no filarial gene fragments were detected in the stools of any of the 52 patients. Future studies should evaluate whether a co-infection with soil-transmitted helminths causing gastrointestinal bleeding and likely allowing (micro)filaria exit into the digestive tract, may facilitate the molecular detection of filarial DNA fragments in stool samples

    Limites de la détection par PCR d’ADN de filaires dans les selles humaines de sujets non-infectés par les géohelminthes

    No full text
    International audienceThe standard techniques for diagnosis of human filariasis are the microscopic examination of blood smears or skin biopsies, which are relatively invasive and poorly sensitive at low levels of infection. Recently, filarial DNA has been detected in fecal samples from non-human primates in Central Africa. The aim of this study was to demonstrate proof-of-concept of a non-invasive molecular diagnosis technique for human filariasis by targeting fragments of 12S rDNA, Cox1, ITS1 and LL20-15kDa ladder antigen-gene by conventional PCR in DNA extracted from stool samples of 52 people infected with Mansonella perstans and/or Loa loa . Of these, 10 patients were infected with soil-transmitted helminths ( Trichuris trichiura and/or Ascaris lumbricoides ), and none were positive for Necator americanus . Interestingly, no filarial gene fragments were detected in the stools of any of the 52 patients. Future studies should evaluate whether a co-infection with soil-transmitted helminths causing gastrointestinal bleeding and likely allowing (micro)filaria exit into the digestive tract, may facilitate the molecular detection of filarial DNA fragments in stool samples.Les techniques standards de diagnostic des filarioses humaines (examen microscopique de gouttes épaisses ou de biopsies cutanées) sont relativement invasives et peu sensibles à de faibles niveaux d’infection. De l’ADN de filaires a été récemment détecté dans des échantillons de fèces de primates non-humains en Afrique centrale. L’objectif de cette étude était de démontrer la preuve de concept d’un diagnostic moléculaire non invasif des filarioses chez l’homme en ciblant des fragments d’ADNr 12S, Cox1, ITS1 et l’antigène LL20-15kDa par PCR classique. L’ADN a été extrait d’échantillons de selles de 52 personnes infectées par Mansonella perstans et/ou Loa loa . Parmi ces patients, dix étaient infectés par des géohelminthes ( Trichuris trichiura et/ou Ascaris lumbricoides ) et aucun n’était positif pour Necator americanus . De manière intéressante, aucun fragment de gène de filaires n’a été détecté dans les selles des 52 patients. Des études futures devraient être menées pour évaluer si une coinfection avec des géohelminthes (provoquant des hémorragies gastro-intestinales et permettant probablement l’effraction de (micro)filaires dans le tube digestif) facilite la détection moléculaire de fragments d’ADN de filaires dans les selles
    corecore