2,564 research outputs found

    Memory-Assisted Quantum Key Distribution with a Single Nitrogen-Vacancy Center

    Get PDF
    Memory-assisted measurement-device-independent quantum key distribution (MA-MDI-QKD) is a promising scheme that aims to improve the rate-versus-distance behavior of a QKD system by using the state-of-the-art devices. It can be seen as a bridge between current QKD links to quantum repeater based networks. While, similar to quantum repeaters, MA-MDI-QKD relies on quantum memory (QM) units, the requirements for such QMs are less demanding than that of probabilistic quantum repeaters. Here, we present a variant of MA-MDI-QKD structure that relies on only a single physical QM: a nitrogen-vacancy center embedded into a cavity where its electronic spin interacts with photons and its nuclear spin is used for storage. This enables us to propose a simple but efficient MA-MDI-QKD scheme resilient to memory errors and capable of beating, in terms of rate and reach, existing QKD demonstrations. We also show how we can extend this setup to a quantum repeater system, reaching, thus, larger distances

    Review of QSAR Models and Software Tools for Predicting Developmental and Reproductive Toxicity

    Get PDF
    This report provides a state-of-the-art review of available computational models for developmental and reproductive toxicity, including Quantitative Structure-Activity Relationship (QSARs) and related estimation methods such as decision tree approaches and expert systems. At present, there are relatively few models for developmental and reproductive toxicity endpoints, and those available have limited applicability domains. This situation is partly due to the biological complexity of the endpoint, which covers many incompletely understood mechanisms of action, and partly due to the paucity and heterogeneity of high quality data suitable for model development. In contrast, there is an extensive and growing range of software and literature models for predicting endocrine-related activities, in particular models for oestrogen and androgen activity. There is a considerable need to further develop and characterise in silico models for developmental and reproductive toxicity, and to explore their applicability in a regulatory setting.JRC.DG.I.6-Systems toxicolog

    Memory-Assised Quantum Key Distribution Immune to Multiple-Excitation Effects

    Get PDF
    Memory-assisted quantum key distribution aims to use existing quantum-device technologies to offer rate-versus-distance enhancements. Here, a variant of such systems, relying on single-photon sources, is proposed that counters the multiple-excitation effects in ensemble-based memories

    Measurement-device-independent quantum key distribution with nitrogen vacancy centers in diamond

    Get PDF
    Memory-assisted measurement-device-independent quantum key distribution (MA-MDI-QKD) has recently been proposed as a possible intermediate step towards the realization of quantum repeaters. Despite its relaxing some of the requirements on quantum memories, the choice of memory in relation to the layout of the setup and the protocol has a stark effect on our ability to beat existing no-memory systems. Here, we investigate the suitability of nitrogen vacancy (NV) centers, as quantum memories, in MA-MDI-QKD. We particularly show that moderate cavity enhancement is required for NV centers if we want to outperform no-memory QKD systems. Using system parameters mostly achievable by today's state of the art, we then anticipate some total key rate advantage in the distance range between 300 and 500 km for cavity-enhanced NV centers. Our analysis accounts for major sources of error including the dark current, the channel loss, and the decoherence of the quantum memories

    Memory-assisted quantum key distribution resilient against multiple-excitation effects

    Get PDF
    Memory-assisted measurement-device-independent quantum key distribution (MA-MDI-QKD) has recently been proposed as a technique to improve the rate-versus-distance behavior of QKD systems by using existing, or nearly-achievable, quantum technologies. The promise is that MA-MDI-QKD would require less demanding quantum memories than the ones needed for probabilistic quantum repeaters. Nevertheless, early investigations suggest that, in order to beat the conventional memory-less QKD schemes, the quantum memories used in the MA-MDI-QKD protocols must have high bandwidth-storage products and short interaction times. Among different types of quantum memories, ensemble-based memories offer some of the required specifications, but they typically suffer from multiple excitation effects. To avoid the latter issue, in this paper, we propose two new variants of MA-MDI-QKD both relying on single-photon sources for entangling purposes. One is based on known techniques for entanglement distribution in quantum repeaters. This scheme turns out to offer no advantage even if one uses ideal single-photon sources. By finding the root cause of the problem, we then propose another setup, which can outperform single memory-less setups even if we allow for some imperfections in our single-photon sources. For such a scheme, we compare the key rate for different types of ensemble-based memories and show that certain classes of atomic ensembles can improve the rate-versus-distance behavior

    Long-distance quantum key distribution with imperfect devices

    Get PDF
    Quantum key distribution (QKD) is one of the most promising techniques for the secure exchange of cryptographic keys between two users. Its unique property of relying on the laws of physics makes it an appealing tool for secure communications. While QKD has been implemented over distances on the order of a few hundreds of kilometers, the transmission rate of the key severely drops, when we go to further distances. An easy solution to this could rely on a network of trusted nodes. This solution, however, is far from ideal. In this thesis, we focus on obtaining long-distance secure communications by using trust-free intermediate nodes between two users. Quantum repeaters will then be at the core of our work and we analytically study different systems under realistic scenarios. We cover a range of repeater setups incorporating quantum memories (QMs), in terms of their short-term and long-term feasibility and in terms of ease of access for end users. We consider the main imperfections of the employed devices. In particular, we consider ensemble-based QMs, which offer a feasible route toward the implementation of probabilistic quantum repeaters. We study the effects of multiple excitations in such QMs and its effects on the key rate in a memory-assisted measurement device- independent QKD (MDI-QKD) system. We then analytically compare the performance of two probabilistic quantum repeater protocols by calculating their secure key rates. We identify under which regimes of operation one system outperforms the other. Source and memory imperfections are considered in our analysis. Finally, we combine a quantum repeater scheme with the MDI-QKD protocol and we derive the largest distances that is possible to reach under practical assumptions. Overall we obtain a realistic account of what can be done with existing technologies in order to improve the reach and the rate of QKD systems within a larger quantum network

    Architectural Considerations in Hybrid Quantum-Classical Networks

    Get PDF
    Three network architectures, compatible with passive optical networks, for future hybrid quantum-classical networks are proposed and compared. These setups rely on three different schemes for quantum key distribution (QKD): BB84, entanglement-based QKD, and measurement-device-independent QKD (MDI-QKD). It turns out that, while for small-to-moderatesize networks BB84 supports the highest secret key generation rate, it may fail to support large numbers of users. Its cost implications are also expected to be higher than other setups. For large networks, MDI-QKD offers the highest key rate if fast single-photon detectors are employed. Entanglement-based networks offer the longest security distance among the three setups. MDI-QKD is, however, the only architecture resilient to detection loopholes and possibly the most favorable with its less demanding end-user technology. Entanglement-based and MDI-QKD setups can both be combined with quantum repeater systems to allow for long-distance QKD with no trust constraints on the service provider
    corecore