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ABSTRACT

This report provides a state-of-the-art review of available computational models for developmental and
reproductive toxicity, including Quantitative Structure-Activity Relationship (QSARs) and related 
estimation methods such as decision tree approaches and expert systems. At present, there are 
relatively few models for developmental and reproductive toxicity endpoints, and those available have
limited applicability domains. This situation is partly due to the biological complexity of the endpoint, 
which covers many incompletely understood mechanisms of action, and partly due to the paucity and 
heterogeneity of high quality data suitable for model development. In contrast, there is an extensive 
and growing range of software and literature models for predicting endocrine-related activities, in 
particular models for oestrogen and androgen activity. There is a considerable need to further develop 
and characterise in silico models for developmental and reproductive toxicity, and to explore their 
applicability in a regulatory setting.
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1. Introduction

Reproductive and developmental toxicity studies (referred to collectively here as reprotoxicity) are 
used to identify the adverse effects a chemical may have on sexual function and fertility in adult males 
and females, developmental toxicity in the offspring, as well as effects on, or mediated via, lactation. 
Thus, reproductive toxicity refers to a range of endpoints relating to the impairment of male and 
female reproductive capacity (fertility) and the induction of non-heritable harmful effects on the 
progeny (developmental toxicity). The variety of observable effects are brought about by a plethora of 
mechanisms of action, many of which are unknown or only partially understood at the molecular and 
cellular level. Along with carcinogenicity studies, reprotoxicity studies are among the most costly and 
time-consuming experimental procedures. Furthermore, reprotoxicity testing requires the highest 
number of test animals. For all these reasons, the development of alternative (non-animal) methods for 
reprotoxicity assessment is a high political priority. 

In this report, a state-of-the-art review of available models for developmental and reproductive toxicity 
is provided. It consists of three sections: the first one summarizes the software (both freely available 
and commercial) that can be used to predict reproductive and developmental toxicity; the second one 
the database that can be used to build the models and the last one literature available models. 

2. Software

A number of computer programs generate structure-based predictions of reprotoxicity endpoints, as 
summarised in Table 1, and reviewed briefly below. Some of these models are classification models, 
making categorical predictions, whereas others make quantitative predictions.
ADMET Predictor: This commercial program is designed to estimate certain ADMET (Absorption, 
Distribution, Metabolism, Elimination, and Toxicity) properties of a drug-like chemical from its 
molecular structure. It includes a qualitative assessment of oestrogen receptor toxicity in rats 
(TOX_ER_filter), together with a quantitative measure of oestrogen receptor toxicity in rats (TOX_ER 
(IC50(estrogen)) that is applied only for compounds classified as ‘Toxic’ by the previous model.

ACD/Tox Suite: The ACD/Tox Suite (formerly called ToxBoxes), provided by ACD/Labs and 
Pharma Algorithms, provides predictions of various toxicity endpoints including ER binding affinity 
(http://www.acdlabs.com/products/admet/tox/). The predictions are associated with confidence 
intervals and probabilities, thereby providing a numerical expression of prediction reliability.  The 
software incorporates the ability to identify and visualize specific structural toxicophores, giving 
insight as to which parts of the molecule are responsible for the toxic effect. It also identifies analogues 
from its training set, which can also increase confidence in the prediction. The algorithms and datasets 
not disclosed. A web version of the software is freely accessible at http://www.pharma-
algorithms.com/webboxes/
CAESAR: A series of statistically-based models, developed within EU-funded CAESAR project 
(http://www.caesar-project.eu), have been implemented into open-source software and made available 
for online use via the web. The freely accessible CAESAR model for developmental toxicity was built 
using 292 compounds. Two models were developed, one using WEKA (Waikato Environment for 
Knowledge Analysis) and Random Forest, and the other using the Adaptive Fuzzy Partition (AFP) 
classification model. 
Derek: Derek for Windows (DfW) is a rule-based system developed by Lhasa Ltd, a non-profit 
company and educational charity (https://www.lhasalimited.org/). All the rules are based either on 
hypotheses relating to mechanisms of action of a chemical class or on observed empirical 
relationships. This system includes structural alerts for three specific endpoints: developmental toxicity 
(3 alerts), teratogenicity (5 alerts), testicular toxicity (1 alert) and oestrogenicity (4 alerts) associated 
with nine levels of confidence: certain, probable, plausible, equivocal, doubted, improbably, 
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impossible, open, contradicted. An alert consists of a toxicophore (a substructure known or thought to 
be responsible for the toxicity) and is associated with literature references, comments and examples. A 
key feature of DfW is the transparent reporting of the reasoning underlying each prediction.

Pearl et al. (2001) conducted a small validation study with 34 chemicals, and reported 100% 
specificity (equivalent to 0% false positives) and 72% sensitivity (28% false negatives). However, due 
to the small size of the dataset, it is difficult to draw general conclusions from these results. 
The Dutch National Institute for Public Health and the Environment (RIVM) published a study 
(Hulzebos and Posthumus, 2003) where Derek predictions for the reproductive toxicity effects of 60 
substances were compared with experimental data. The authors concluded that reprotoxicity is poorly 
predicted by this software. A further study by the RIVM (Maslankiewicz, 2005) reached the same 
conclusion. The study examined the ability to correctly predict the developmental toxicities of 108 
industrial chemicals by using Derek and by applying the chemical categories developed by the US 
EPA to support the implementation of the Toxic Substances Control Act (TSCA; 
http://www.epa.gov/compliance/civil/tsca/tscaenfstatreq.html). The conclusion was based on the 
observation that Derek only recognised 10% of substances which may cause impaired fertility, and 
only 19% of chemicals which may harm the foetus (on the basis of the harmonised EU classifications 
of chemicals in Annex I of the Dangerous Substances Directive). However, this conclusion is unfair to 
the extent that it ignores the fact that Derek is only designed to identify positives and does not make 
negative predictions – the absence of a prediction simply means there are no rules identifying chemical 
features of toxicological concern, and does not necessarily reflect the absence of toxicity. For the same 
reason, use of the ten TSCA categories also revealed low sensitivities (percentage of correctly 
predicted positive substances) – 19% and 18% for fertility and teratogenicity effects, respectively. The 
authors also noted that Derek and TSCA had one structural alert in common for the studied chemicals 
and thus the applicability domain is different for the two predictive approaches. For this reason, it 
would be worthwhile to build on the RIVM study by investigating the combined use of prediction 
based on the use of TSCA categories and Derek.
Endocrine Disruptor Knowledge Base (EDKB): This online database, developed and made publicly 
available by the US FDA’s National Center for Toxicological Research (NCTR), contains computer-
based predictive models to predict the binding affinity of compounds to the oestrogen and androgen 
nuclear receptor proteins.
Leadscope: The Leadscope software has a module containing QSAR models for predicting the 
developmental toxicity of the rodent foetus, including dysmorphogenesis (structural and visceral birth 
defects), developmental toxicity (foetal growth retardation and weight decrease), and foetal survival 
(foetal death, post-implantation loss, and preimplantation loss). The Leadscope QSAR models for 
reproductive toxicity include rodent male reproductive, rodent male sperm, female reproductive.

Molcode Toolbox: This is a commercial tool developed and marketed by Molcode Ltd 
(http://molcode.com/). It has a range of modules for predicting toxicological endpoints and ADME 
properties between them endocrine activity. The models are well documented and the underlying 
experimental data is made available with references and structure files (MDL molfile).

MultiCASE: This software, developed by MultiCASE Inc. (http://multicase.com/), implements the so-
called CASE (Computer Automated Structure Evaluation) approach, and is referred to in different 
ways (MCASE or MC4PC), depending on the software version and computer platform and its 
successor. The program automatically generates predictive models from datasets provided by the user. 
It is based on a fragment-based technology sometimes referred to as the CASE approach. The program 
performs a hierarchical statistical analysis of a database to discover substructures that appear mostly in 
active molecules thus being with high probability responsible for the observed activity. Initially, it 
identifies the statistically most significant substructure within the training set. This fragment, labelled 
the top biophore, is considered responsible for the activity of the largest possible number of active 
molecules. The active molecules containing this biophore are then removed from the database, and the 
remaining ones are submitted to a new analysis for identification of the next biophore. The procedure 
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is repeated until either the activity of all the molecules in the training set has been accounted for or no 
additional statistically significant substructure can be found. Then for each set of molecules containing 
a specific biophore, the program identifies additional parameters called modulators, which can be used 
to derive QSAR within the reduced set of congeneric molecules. The modulators consist of certain 
substructures or physicochemical parameters that significantly enhance or diminish the activity 
attributable to the biophore. QSARs are then derived by incorporating the biophores and the 
modulators into the model. For the endpoints prediction, the software uses it own toxicity scale, from 0 
to 100 CASE units, to cover the range from inactive, marginally active and active. In many cases, it is 
difficult to relate these CASE units to traditional measures of toxicity.

The US FDA have applied MultiCASE methodology (the MC4PC software) to the below-mentioned 
FDA database to develop a battery of QSAR models for reproductive and developmental toxicity 
hazard identification (Matthews et al., 2007a, 2007b). Their models were designed to predict seven 
general reprotoxicity classes: male and female reproductive toxicity, foetal dysmorphogenesis, 
functional toxicity, mortality, growth, and newborn behavioural toxicity. These are different to the 
models included in the marketed version of the software. The QSARs were derived from weighted 
reproductive toxicity findings, in order to incorporate a WoE paradigm based on data from as many as 
three mammalian species (rats, mice, and rabbits) and to identify trans-species reprotoxicants with a 
high probability of being reprotoxic in humans. The authors reported a good predictive performance 
for the majority of the QSARs in this battery: high specificity (>80%), low false positive rate (<20%), 
and high database coverage (>80%). Because of the large size of the training sets (containing 627 to 
2023 chemicals) and the diversity of molecular structures they represent, the authors argue that the 
QSARs to have a wide applicability domain. However, the models are not documented in sufficient 
detail to be reproduced and they are not readily transferable. 

OECD QSAR Application Toolbox: The OECD QSAR Application Toolbox is a standalone software 
application for data gaps for assessing the hazards of chemicals. Data gaps are filled by following a 
flexible workflow in which chemical categories are built and missing data are estimated by read-across 
or by applying local QSARs (trends within the category). The Toolbox also includes a range of 
profilers to quickly evaluate chemicals for common mechanisms or modes of action. In order to 
support read-across and trend analysis, the Toolbox contains numerous databases with results from 
experimental studies. It is freely available from the OECD website: 
http://www.oecd.org/env/existingchemicals/qsar and it will soon include a profiler for predicting ER 
binding potential, based on a decision tree developed by the US EPA described below (OECD, 2009).
PASS: The PASS (Prediction of Activity Spectra for Substances) is developed and marketed by the 
Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences. Chemicals structures 
are presented in mol format and used to generate Multilevel Neighbourhood of Atoms (MNA) 
descriptors (Filimonov et al., 1999). The system predicts the probability (Pa) of a biological activity 
for a new compound, by estimating the similarity/dissimilarity of the new substance to substances with 
well known biological activities present in the training set. The tool also gives a cross reference 
between biological activities on the basis of the knowledgebase of mechanism-effect relationships. A 
Bayesian algorithm is used to predict various biological activities in terms of the probabilities of 
presence (Pa) and absence (Pi) of each particular activity (Filimonov & Poroikov, 2008; Poroikov et 
al., 2007). It predicts several specific toxicities among them teratogenicity and embryotoxicity. An 
online version of PASS is available at: http://195.178.207.233/PASS/index.html. 

T.E.S.T.: The Toxicity Estimation Software Tool is an open-source application developed by the US 
EPA. It estimates the toxicity of a compound by applying several QSAR methodologies thus allowing 
the user to have greater confidence in predicted toxicities. Among other toxicities it predicts 
developmental toxicity. The tool is freely downloadable from the EPA website 
(http://www.epa.gov/nrmrl/std/cppb/qsar/index.html#TEST). The models are well documented and the 
training set is made available as structure files (SDF file).
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TIMES: TIssue MEtabolism Simulator is a heuristic algorithm to generate metabolic maps from a 
library of biotransformations and abiotic reactions. It allows prioritization of chemicals according to 
toxicity of their metabolites. The TIMES platform is also used to predict different endpoints including 
receptor mediated endpoints for oestrogen, androgen and aryl hydrocarbon binding affinity. They are 
based on the Common Reactivity Pattern (COREPA) approach developed by the Laboratory of 
Mathematical Chemistry at the Bourgas University Bulgaria. The COREPA approach is a probabilistic 
classification method which assesses the impact of molecular flexibility on stereo electronic properties 
of chemicals. Similarity between chemicals is analysed by comparing their conformational 
distributions, and the system automatically identifies the parameter that best discriminate chemicals in 
groups. A Bayesian decision tree is then developed for classifying untested chemicals. The use of 
COREPA to predict oestrogenicity has been well described elsewhere (Mekenyan et al., 2003a, b; 
Schmieder et al., 2003).
TOPKAT: This QSAR-based system, developed by Accelrys Inc. (http://accelrys.com/), makes 
predictions of a range of toxicological endpoints, including developmental toxicity. The 
Developmental Toxicity Potential (DTP) module of the TOPKAT software was developed from 
experimental studies selected after review of literature citations on rat oral data. TOPKAT comprises 
three QSAR models, each applicable to a specific class of chemicals. The output is the probability of a 
submitted chemical structure being a developmental toxicant in the rat. A probability below 0.3 
indicates no potential for developmental toxicity (NEG), whereas a probability above 0.7 signifies 
developmental toxicity potential (POS). The probability range between 0.3 and 0.7 refers to the 
“indeterminate” zone (IND). The TOPKAT model automatically determines whether the submitted 
structure belongs to the Optimum Prediction Space (OPS) of the model in order to evaluate the 
reliability of prediction. The OPS is TOPKAT’s formulation of the model applicability domain - a 
unique multivariate descriptor space in which a given model is considered to applicable. Any 
prediction generated for a query structure outside of the OPS space is considered unreliable. The 
original models were published by Enslein et al. (1983) and by Gombar et al. (1995), although it is not 
clear whether the models now implemented in the software are the same as, or refinements of, the 
original models.
Toxmatch: This freely available software does not in itself generate predictions of reprotoxicity 
endpoints, but it can be used to develop categories and support read-across assessments. This has been 
demonstrated in a study by Enoch et al. (2009). This study illustrates the use of 2D similarity indices 
within Toxmatch to form categories for 57 query chemicals. The underlying hypothesis is that 
chemicals selected as being similar should act via a single mechanism of action, even if that 
mechanism is unknown. Read-across predictions were performed for the 17 query chemicals for which 
a category could be formed. The authors concluded that 2D similarity methods offer a useful method 
for building chemical categories for reproductive toxicity in which a priori mechanistic knowledge is 
limited. Although the categories proposed are limited in terms of their applicability (40 query 
chemicals were not allocated to categories), the results form a good basis for further investigations.
VirtualToxLab: This is a commercial tool for predicting endocrine disrupting potential by simulating 
and quantifying the interactions with aryl hydrocarbon, oestrogen alpha/beta, androgen, thyroid 
alpha/beta, glucocorticoid, liver X, mineralocorticoid and peroxisome proliferator-activated receptor 
gamma (Vedani et al., 2009; Vedani & Smiesko 2009). It also includes metabolic considerations by 
simulating interactions with the enzymes CYP450 3A4 and 2A13. The tool is based on the combined 
use of automated flexible docking with multi-dimensional QSAR (mQSAR).
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Table 1 Software for developmental and reproductive toxicity

Software Availability Applicability 
ADMET Predictor
http://www.simulations-plus.com/

Commercial Qualitative and quantitative prediction
of oestrogen receptor toxicity in rats. 
Based on two models: a qualitative 
model and, if toxic, the quantitative ratio 
of IC50 estradiol/IC50 compound).

ACD ToxSuite (ToxBoxes); 
http://www.acdlabs.com/products/admet/tox/

Commercial
Free web 
application: 
http://www.phar
ma-
algorithms.com/
webboxes/

ER binding affinity prediction. Identify 
and visualize specific structural 
toxicophores. Identify analogues from 
its training set. Algorithms and datasets 
not disclosed. Predictions associated 
with confidence intervals and 
probabilities, providing prediction 
reliability.

CAESAR
http://www.caesar-project.eu/

Freely available Two classification models for 
developmental toxicity based on the 
dataset of Arena et al. (2004) including
292 compounds.

Derek
http://www.lhasalimited.org/

Commercial Classification models (different levels of 
likelihood) based on 23 alerts for 
developmental toxicity; 4 alerts for 
oestrogenicity.

Endocrine Disruptor Knowledge Base (EDKB) 
database (US FDA)
http://www.fda.gov/ScienceResearch/Bioinforma
ticsTools/EndocrineDisruptorKnowledgebase/def
ault.htm

Freely available Quantitative models to predict the 
binding affinity of compounds to the 
estrogen and androgen nuclear receptor 
proteins. 

Leadscope
http://www.leadscope.com/

Commercial Classification models for developmental 
toxicity in the rodent fetus:
dysmorphogenesis (structural and 
visceral birth defects), developmental 
toxicity (fetal growth retardation and 
weight decrease), and fetal survival 
(fetal death, post-implantation loss, and 
preimplantation loss). Models of 
reproductive toxicity: rodent male 
reproductive, rodent male sperm, female 
reproductive.

MolCode Toolbox
http://molcode.com/

Commercial Quantitative prediction of rat ER 
binding affinity and AhR binding 
affinity

MultiCASE (MC4PC)
http://www.multicase.com/

Commercial Classifcation models for developmental 
toxicity associated with a variety of 
datasets, mainly drugs. The marketed 
software includes modules for predicting 
mammal sperm toxicity, developmental 
toxicity, developmental fetal growth 
retardation, development fetal weight 
decrease and survival fetal death.
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Software Availability Applicability 
OSIRIS property explorer 
http://www.organic-chemistry.org/prog/peo/

Freely available Classification model which predicts 
“undesirable” effects (mutagenicity, 
tumorigenicity, irritating effects and 
reproductive effects), mainly based on 
the RTECS database of >3500 
compounds.

PASS
Institute of Biomedical Chemistry of the Russian 
Academy of Medical Sciences, Moscow
http://ibmc.p450.ru/PASS//

Commercial Classification models giving probability 
of reprotoxic effects. The 
embryotoxicity model predicts the 
probability that a substance crosses the 
placental membrane and causes any 
toxic effect (e.g. fetal bradycardia, low 
birth weight) or death of an embryo. The 
teratogenicity model predicts the 
probability that a substance crosses the 
placental membrane and causes 
abnormal development of one or more 
body systems in the embryo.

T.E.S.T.: The Toxicity Estimation Software Tool 
http://www.epa.gov/nrmrl/std/cppb/qsar/index.ht
ml#TEST)

Freely available Developmental toxicity estimation. The 
prediction is done by applying several 
QSAR methodologies resulting in a 
greater confidence of the results.

TIMES (COREPA)
Laboratory of Mathematical Chemistry, Bourgas 
University
http://oasis-lmc.org/

Commercial Classification models for the prediction 
of estrogen, androgen and aryl 
hydrocarbon binding.The chemical is 
predicted to fall in one of several 
activity bins (ranges of binding affinity).

TOPKAT (Accelrys)
http://www.accelrys.com

Commercial Classification model for developmental 
toxicity of pesticides, industrial 
chemicals.

Toxboxes
Pharma Algorithms
http://pharma-algorithms.com/tox_boxes.htm

Commercial Classification model for the prediction 
of ER binding.

VirtualToxLab
http://www.biograf.ch

Commercial Classification model for endocrine-
disruptiong potential based on 
simulations of the interactions towards 
aryl hydrocarbon, estrogen •/•, 
androgen, thyroid •/•, glucocorticoid, 
liver X, mineralocorticoid, peroxisome 
proliferator-activated receptor •, as well 
as the enzymes CYP450 3A4 and 2A13.
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3. Databases

To improve the availability of (Q)SARs and other in silico methods for reprotoxicity endpoints, there 
is a need to develop reprotoxicity databases of high quality and high resolution, in terms of capturing 
the wide variety of adverse effects and underlying mechanisms of action. Currently available databases 
are summarised in Table 2.
This need has been acknowledged by the International Life Sciences Institute Risk Science Institute 
(ILSI RSI), who convened a working group to review methodology used to construct statistically 
based SAR systems for developmental toxicity (Julien et al., 2004). It was concluded that an improved 
process is needed for utilizing developmental toxicity data in the construction of statistically based 
SAR models. As result of the ILSI RSI report (Julien et al., 2004), ILSI is developing a QSAR-ready 
and peer-reviewed database with the assistance of Leadscope Inc. (Columbus, Ohio, USA), and with 
data contributions coming from a range of governmental and academic organisations, as well as  
contract research laboratories and major pharmaceutical companies. At the time of writing, this 
database is not yet available.

The US FDA has developed and made publicly available the ICSAS Reprotox database (named after 
the developer research unit, the Informatics and Computational Safety Analysis Staff [ICSAS]), as 
reported by Matthews et al. (2007a, 2007b). The majority of the data were taken from five publicly 
available sources: Reproductive Toxicology Center System (REPROTOX), Shepard’s Catalog of 
Teratogenic Agents, Teratogen Information System (TERIS), The Registry of Toxic Effects of 
Chemical Substances (RTECS), and The Physicians’ Desk Reference (PDR). In addition, a small 
portion of internal FDA reprotoxicity data was included. A review of the many duplicate records 
provided an opportunity to investigate the consistency of information that was reported in the different 
public databases but extracted from the same original source. This investigation revealed a consistent 
interpretation of the data from the original sources with the exception of RTECS, indicating in a lesser 
reliability of this database. The reprotoxicity data were classified into seven general classes (male 
reproductive toxicity, female reproductive toxicity, fetal dysmorphogenesis, functional toxicity, 
mortality, growth, and newborn behavioural toxicity), and 90 specific categories. Each specific 
category contained over 500 chemicals, but the percentage of active chemicals is low, generally only 
0.1–10%. In total, the database contains 51,724 study records from over 10,000 individual 
reprotoxicity studies in which each record is linked to the test chemical structure. The majority of 
reprotoxicity studies were conducted in rats, mice and rabbits. The majority of test substances were 
pharmaceuticals, with a relatively limited number of industrial chemicals. The chemical structures are 
represented as “mol” files and as SMILES (Simplified Molecular Input Line Entry System) codes. The 
database contains 2134 organic chemicals that are suitable for QSAR modelling. In the QSAR-ready 
database, built for QSAR analysis, the inorganics, organometallics, high molecular weight polymers, 
and mixtures of organic chemicals, were excluded.

In support of the ToxCast predictive toxicology effort (Dix et al., 2007) the US EPA has developed 
and made publicly available the Toxicity Reference Database (ToxRefDB) for capturing information 
from publicly available in vivo toxicity studies. This database contains standard toxicity test results for 
pesticides and other environmental chemicals. It includes the Developmental Toxicity Endpoints 
dataset (Knudsen et al., 2009)  resulting from 383 rat and 368 rabbit prenatal studies on 387 chemicals, 
mostly pesticides; and the Reproductive Toxicity Endpoints dataset (Martin et al., 2009) results from 
multigeneration reproductive toxicity studies on 316 chemicals. The multigeneration reproductive 
toxicity data set includes assessment of gonadal function, the oestrous cycle, mating behaviour, 
conception, gestation, parturition, lactation, weaning, and on the growth and development of the 
offspring. The information in the ToxRefDB is well structured, searchable and downloadable, which 
makes it a potentially useful resource for QSAR modelling and other developments in predictive 
toxicology. In order to develop models capable of supporting risk assessment, dose-response data will 
need to be added.
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Table 2 Databases for reproductive toxicity (including receptor binding)

Database Availability Information 

Toxicology Data Network (Toxnet) 
Developmental and Reproductive Toxicology 
Database (DART)
http://toxnet.nlm.nih.gov/cgi-
bin/sis/htmlgen?DARTETIC.

Freely 
available

Bibliographic database containing over 
200,000 references to literature published 
since 1965. It covers teratology and other 
aspects of developmental and reproductive 
toxicology. Users can search by subject 
terms, title words, chemical name, Chemical 
Abstracts Service Registry Number (RN), 
and author.

Endocrine Disruptor Knowledge Base (EDKB) 
database (US FDA)
http://www.fda.gov/ScienceResearch/Bioinfor
maticsTools/EndocrineDisruptorKnowledgebas
e/default.htm

Freely 
available

Biological activity database including in vitro 
and in vivo experimental data for more than 
3,000 chemicals and chemical-structure 
search capabilities. It includes two datasets: 
Estrogen Receptor (ER) binding dataset 
(containing 131 ER binders and 101 non-ER 
binders), and Androgen Receptor (AR) 
bataset (containing 146 AR binders and 56 
non-AR binders). Searchable by assay type 
and by structure; provides a search ranking 
based on a structure similarity index.

Endocrine Active Chemicals Database (JRC) Under 
development. 
In-house 
prototype with 
web version 
planned.

Searchable database giving information on 
chemical identity (e.g. CAS number), 
chemical structure, toxicity (both to humans 
and wildlife), physicochemical properties, 
mode and mechanism of action, for about 
520 chemicals, including those on the EU 
priority list of substances
(http://ec.europa.eu/environment/endocrine/st
rategy/substances_en.htm)

ICSAS Reprotox Database (US FDA)
http://www.fda.gov/AboutFDA/CentersOffices/
CDER/ucm092217.htm

Freely 
available

WOE values for 2134 organic chemicals 
(most of them pharmaceuticals; plus limited 
numbers of industrial chemicals). SMILES 
and mol files available. 

NureXbase
http://nurexbase.prabi.fr

Freely 
available

Information on EACs linked to their receptor 
targets. Sequence, expression and 3D 
structures data are linked. 

NURSA (Nuclear Receptor Signaling Atlas)
http://www.nursa.org/

Freely 
available

Information on chemical structure, crystal 
structure, SMILES, physical descriptors, 
nuclear receptors and mechanism of 
endocrine action.

OECD (Q)SAR Toolbox Freely 
available

Altough primarily a tool for chemical 
categories and read-acros, it also includes 
several databases, including reprotoxicity 
data: 166,072 ER binding data from Danish 
EPA (pre-generated predictions, not 
experimental values) as well as 1606 
experimental ER binding affinity values from 
the OASIS commercial database. 
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Database Availability Information 
REDIPED (Relational Database of Information 
on Potential Endocrine Disrupters) developed 
by the Institute for Environment & Health, 
University of Leicester, Leicester, UK.
http://www.cranfield.ac.uk/health/researchareas
/environmenthealth/

Commercial Includes references and data on chemical 
identity, physical properties, production 
volumes, uses, regulations, sources of 
exposure, exposure assessment, 
environmental fate & transport (i.e. 
accumulation, degradation, fate), and 
biological activity (in vitro and in vivo
activity, binding abilities, relative activity, 
and general toxic effects).

US EPA ToxRefDB 
http://www.epa.gov/NCCT/toxrefdb/

Freely 
available

Standard toxicity test results for pesticides 
and other environmental chemicals including 
developmental toxicity (387 chemicals) and 
multigeneration reproductive toxicity (316 
chemicals).
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4. Literature models for reprotoxicity endpoints

Compared with other toxicological endpoints, there are relatively few (Q)SARs for reprotoxicity, 
which is due to the diversity and biological complexity of this family of endpoints as well as the 
paucity of data suitable for model development. The published (Q)SARs and other structure-based 
methods (e.g. decision tree approaches) can be grouped into the following categories: a) local models 
for the reprotoxic effects of individual series of compounds; b) global models for the reprotoxic effects 
of heterogeneous groups of compounds; c) models for ADME properties; d) models relating to 
endocrine activity and endocrine disruption potential; and e) chemical categories and read-across 
assessments. The status of these methods up to 2008 has been reviewed elsewhere (Cronin & Worth,
2008).

In this section, selected and representative examples of published (Q)SAR models and decision tree 
approaches are described. Most of these models are based on specific chemical classes and 
consequently have limited applicability domains. A summary is given in Table 3. Models for 
endocrine-related effects are covered separately below, since they are not necessarily related with 
reprotoxicity. 
Several studies have developed decision trees for classifying reprotoxic effects, which are potentially 
useful for regulatory applications, due to their transparency, reproducibility and transferability. For 
example, Sussman et al. (Sussman et al., 2003) used toxicity data from the Teratogen Information 
System (TERIS) as well as FDA data. They also explored the development of model batteries (termed 
ensembles). They found the most important physicochemical variables for predicting developmental 
toxicity were logP, which expresses a chemical’s ability to distribute itself between aqueous and lipid 
biophases, electronic variables such as the energies of the HOMO (highest occupied molecular 
orbital), LUMO (lowest unoccupied molecular orbital), and measures of hydrogen bonding.
Examples of read-across within categories are provided by Enoch et al. (2009), described above, and 
by Fabjan et al. (2006), who illustrated the ability to make read-across predictions for developmental 
toxicity within a series of phthalate esters. The category comprised 10 ortho-phthalate esters with 
different side chain lengths. Phthalates with side-chain lengths C4 to C6, which are known to cause 
severe reproductive effects, were included. This study showed that by careful category formation, 
qualitative read-across predictions could be made for several chemicals not used to develop the initial 
phthalate category. The authors suggest that all the chemicals within the category act via the same 
mechanism of action, thus adding confidence to the read-across predictions.
A limited number of QSAR models were developed within the ReproTect project (1/07/04-30/06/09), 
funded under the 6th EU Framework Programme. ReproTect aimed to develop and optimise an array 
of in vitro tests and testing batteries, in order to provide information on the hazard of compounds to the 
mammalian reproductive cycle (http://www.reprotect.eu/). ReProTect has covered the reproductive 
cycle by addressing three major research areas: i) fertility; ii) implantation; (iii) prenatal development. 
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Table 3. Summary of QSAR models for reproductive toxicity

Reference Endpoint Dataset size and applicability
Matthews et al. (2007a, 
2007b)

Male reproductive toxicity, female 
reproductive toxicity, fetal 
dysmorphogenesis, fetal functional 
toxicity, fetal and newborn mammal 
mortality, fetal growth toxicity, newborn 
behavioural toxicity

2134 marketed drugs, pesticides 
and industrial chemicals. Salts, 
metals, high MW substances, 
organometallics, gases and 
complex mixtures were excluded.

Hewitt et al. (2007) Placental transfer (clearance index and a 
transfer index)

Clearance index dataset (n=86) 
and a transfer index dataset
(n=58). 

Arena et al. (2004) Developmental toxicity potential from the 
evaluation of human and animal data on 
potentially teratogenic chemicals 
(FDA/TERIS database)

293 chemicals (117 active and 
176 with no evidence of 
developmental toxicity)

Sussman et al. (2003) Developmental toxicity potential from the 
evaluation of human and animal data on 
potentially teratogenic chemicals 
(FDA/TERIS database)

293 chemicals (117 active and 
176 with no evidence of 
developmental toxicity)

Devillers et al. (2002a) Developmental toxicities to Hydra 
attenuata

17 glycols, glycol ethers, and 
xylenes

Devillers et al. (2002b) Developmental toxicities to Hydra 
attenuata

30 glycols, glycol ethers, xylenes 
and phenols

Mekenyan et al. (1996) Acute lethality evaluated using the Frog 
Embryo Teratogenesis Assay: Xenopus
(FETAX)

36 semicarbazides and 
thiosemicarbazides

Richard and Hunter (1996) Developmental toxicity in mouse whole 
embryo culture assay. 

acetic acid and a series of ten 
haloacetic acids

Dawson et al. (1996) Developmental toxicity to Xenopus
embryos including 96-h lethality, 
malformation and developmental hazard 
index 

45 carboxylic acids including 
aliphatics and aromatics

Ridings et al. (1992) Developmental toxicity potential in rats 12 dopamine mimetics
Dawson (1991) A modified FETAX (Frog Embryo 

Teratogenesis Assay: Xenopus)
10 aliphatic carboxylic acids

Dawson et al. (1991) Toxicity and teratogenicity using early 
embryos of the frog Xenopus laevis

Nine benzoic acid hydrazides and 
carbazates

Schultz and Dawson (1990) Developmental toxicity to Hydra 
attentuata

14 glycols and glycol ethers

Schultz and Dawson (1990) 96 hour embryo malformation (EC50) 
using FETAX 

9 short-chain carboxylic acids:

Schultz and Dawson (1990) 96 hour embryo malformation (EC50) 
using FETAX 

9 acid hydrazides

Kavlock (1990) maternal toxicity in the Chernoff/ Kavlock 
assay 

22 substituted phenols

Brown et al. (1989) teratogenicity in an in vitro assay to inhibit 
rat embryo mid-brain cells.

20 phenylhydantoins
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5. Endocrine-related effects

5.1 Endocrine Active Substances and potential Endocrine Disruptors
Endocrine Active Substances (EAS) are chemicals having the potential to interfere with the endocrine 
systems, as judged from in vitro or in vivo tests. Such chemicals may be regarded as endocrine 
disruptors (EDs) if there is evidence that the substance causes adverse health effects in an intact 
organism, or its progeny, secondary to changes in endocrine function. In particular, EDs have been 
associated with reprotoxicity, as well as cancer, diabetes and obesity. Numerous mechanisms of action 
have been associated with endocrine disruption, and a wide variety of in vitro tests have been 
developed to identify chemicals acting via these mechanisms. The status of these in vitro tests has been 
reviewed by Jacobs et al. (2008), who also emphasise the need to incorporate metabolic considerations 
into the assessment of EAS. Chemicals with ED potential are of particular concern for human health 
and the environment, especially if their potential adverse effects are not detected by other endpoint 
assays. In REACH, EDs are considered to be Substances of Equivalent Concern as other Substances of 
Very High Concern.

EAS act via a range of mechanisms with the result of enhancing or suppressing normal hormone 
responses, including homeostatic and feedback mechanisms. In many cases, EAS act by binding to 
nuclear hormone receptors (NRs), which are ligand-inducible transcription factors involved in the 
regulation of specific target genes and of critical cellular processes such as cell growth, differentiation 
and metabolic processes. Members of the NR superfamily include receptors for various steroid 
hormones oestrogen (ER), androgen (AR), progesterone (PR), several corticosteroids, retinoic acid, 
thyroid hormones, vitamin D, and dietary lipids (the peroxisome proliferator activated receptor; 
PPAR).

The largest and best studied group of NRs is the Oestrogen Receptor (ER) family. The ER is a ligand-
dependent transcription factor – when a hormone binds to the ligand binding domain (LBD), it induces 
a conformational change in the receptor that initiates a series of events that culminate in the activation 
or repression of responsive genes (Anstead et al., 1997). The crystallographic structures available for 
the ER have provided insights into mechanisms of action and have given an input to the development 
of highly specific in silico models. The mobility and plasticity of the ER ligand-binding cavity have 
been identified as important factors allowing the binding of compounds of different structural types to 
the receptor site (Pike et al., 1999). In absence of the ligand, ERs are in an inactive conformation in the 
target cell nuclei. The binding of an agonist switches the ER into an active conformation, while the 
binding of an antagonist blocks agonist access. A third category of ligands, termed selective ER 
modulators (SERMS), have the ability to act as both agonists and antagonists, depending on the 
cellular and promoter context.

5.2 In silico modelling of endocrine-related effects
There is an extensive literature on the modelling of NR binding and endocrine activity, including 
studies based on traditional QSAR, molecular modelling, and decision tree approaches. This section 
reviews, with illustrative examples, shows the main types of in silico methods that have been 
developed to support the identification of EDs. Strictly, these should not be regarded as in silico
models for endocrine disruption, since they do not in themselves provide sufficient information to 
determine whether adverse effects are produced secondary to changes in endocrine function. However, 
they could be regarded as models for the identification of EAS.

An extensive (but not exhaustive) list of available models is provided in Table 4. Some of the studies 
included in this table were reviewed in the context of a JRC-funded study entitled the “Validation of 
non-commercial (Q)SAR models for ER and AR binding”, which was performed by Mario Negri 
Institute (Benfenati et al., 2005). In this study, non-proprietary models for ER and AR binding activity 
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were reviewed in order to identify interesting publications related to ER and AR endpoints. A scheme 
for scoring each model/publication was based on the availability of key information (experimental 
biological data, structures, descriptors, chemical domain and models). A total of 158 models 
(published until 2005) were scored. Some of the most promising (highest-scoring) ones are included in 
the Table 4, along with some additional ones (those published after 2005).

Several studies have reported decision trees for categorising chemicals based on the NR binding 
potential. These are potentially useful for regulatory applications, due to their simplicity, transparency, 
reproducibility and transferability. For example, Netzeva et al. (2006) developed a binary 
classification model (Figure 1) for predicting oestrogen-active versus inactive chemicals on the basis 
of two descriptors with a clear physicochemical meaning (logP and the number of hydrogen bond 
donors). The data used were from an in vitro reporter gene assay. Subsequently Gallegos Saliner et al.
(2006) assessed the predictivity of the model using an external test set and by taking into account the 
limitations associated with the applicability domain (AD) of the model. This validation study indicated 
a concordance of 71%, a sensitivity of 84 and a specificity of 69%.

Figure 1 Decision tree for the classification of oestrogen-active chemicals (modified from Netzeva et al., 
2006)

A decision tree for predicting ER binding has been developed by the US EPA and has been extensively 
peer-reviewed, both by the OECD QSAR Management Group (OECD, 2009) and by an independent 
peer review panel convened by the EPA. The decision tree is based on the hypothesis that the 
structural domain of chemicals that can bind to the ER is determined by the energy and steric 
constraints of the ER itself. Based on experimental data available in literature, the nature of the 
chemical interactions in the various “subpockets” within the ER-binding domain(s) was hypothesised. 
Three primary ER binding subpockets were identified, having different requirements for hydrogen 
binding. The decision tree described uses basic structural features and simple properties to match 
chemicals with “similar” chemical groups. The system examines each chemical and places them into 
groups of inactive chemicals, “drug-like” chemicals (which have the potential for strong ER binding 
affinity), or groups of chemicals which may have weak-to-moderate binding affinity, depending on 
specific properties or structural features. The QSAR Management Group has decided to incorporate 
this decision tree as a “profiler” in the OECD (Q)SAR Application Toolbox, thereby making it freely 
available and readily applicable. 

Oestrogenicity

N.HB don = 0 N.HB don = 1 N.HB don • 2

Inactive 1.44• log Kow 
•1.76

1.83• log Kow 
•5.52

0.28• log Kow 
•1.75

1.87• log Kow 
•5.42

Inactive Active Inactive Active
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QSARs have been developed by the University of Bourgas (Serafimova et al., 2007) to predict the 
binding affinity of chemicals with the human oestrogen receptor alpha (hER•). The hER• binding 
affinities were modelled using a training set of 645 chemicals. The ultimate model was organised as a
battery of QSARs associated with interaction mechanism and potency categories. The QSAR model
was combined with a metabolic simulator in the TIMES modelling platform. When a new chemical is 
submitted to the system, it undergoes simulated metabolism; part of the generated metabolites are 
detoxified by phase II reactions thereby interrupting the metabolism; other metabolites are filtered by 
the QSAR model to predict their binding potency to hER•. According to the authors, this model can be 
used as supporting information in a weight of evidence approach helping in the replacement or 
minimization of animal testing.
When the 3D structure of the protein receptor is known, in silico approaches such as molecular 
docking can be applied. Docking is used to find the best match between a biological macromolecule 
and a ligand. The ligand is placed inside the receptor pocket and the free energy of binding of the 
molecular complex is estimated computationally. The receptor structure needs to available from 
experimental studies, usually X-ray crystallography or NMR. In the case of ERs, several crystal 
structures of the receptor with different ligands (both agonists and antagonists) are available from the 
Protein Data Bank (PDB) (http://www.rcsb.org/pdb/home/home.do). 

Another in silico approach often used for ER affinity prediction is 3D-QSAR based on so-called field-
based descriptors that describe the micro-environment surrounding the (ligand) molecules (molecular 
electrostatic and steric potential and Van der Waals volume). For example, Comparative Molecular 
Field Analysis (CoMFA) is a modelling method that examines molecules in three-dimensional detail, 
describing the magnitude and directions of electronic and steric interactions (Cramer et al., 2002). 
CoMFA produces an imaginary 3D box around the ligand, consisting of steric and electrostatic 
interaction energies at each grid point. These values become the descriptors for QSAR analysis. The 
main advantages of CoMFA methods are: a) the crystal structure of the protein target is not needed, 
since the analysis is derived entirely from the ligand; and b) by describing properties in terms of 3D 
fields, it is possible to visualise areas within the 3D space around the ligand  that are positively or 
negatively related to the activity. The main disadvantage of CoMFA is the need to align (superimpose) 
numerous 3D structures which makes it difficult to study heterogeneous datasets. Some examples of 
CoMFA investigations of ER and AR binding are given in Table 4. CoMFA is a research tool that 
requires considerable expertise to implement. It is useful for investigations into mechanisms of binding 
and in the development of QSARs, but is not suited for the routine assessment of chemicals by non-
specialists.

An alternative to CoMFA, which avoids alignment difficulties, is to use VolSurf (Cruciani et al.,
2000a,b) and ALMOND (Pastor et al., 2000), which are commercially available 3D-QSAR methods 
developed by Molecular Discovery (http://www.moldiscovery.com/index.php). These are sophisticated 
yet easy-to-handle computational procedures that can be used to explore the physicochemical property 
space of a molecule, using a simple molecular input such as SMILES. There is no need to use and 
manipulate 3D structures since these operations are automatically performed by the software. VolSurf 
automatically generates 3D maps and compresses the information into numerical descriptors. 
ALMOND generates and handles alignment-independent descriptors called GRIND (GRid 
INdependent Descriptors). These are a new generation of 3D-molecular descriptors - being alignment 
independent, they are quickly and automatically computed. These methodologies are promising 
research tools for future QSAR development. 
A more recent development is VirtualToxLab, developed by Vedani and colleagues (Vedani et al.,
2009; Vedani & Smiesko 2009). This is an in silico tool for predicting the endocrine-disrupting 
potential of compounds by simulating their interactions towards a series of proteins known to trigger 
adverse effects. It is based on a fully automated protocol, calculating the binding affinity of a molecule 
towards a series of proteins and estimating the resulting toxic potential. Currently, 12 protein targets 
are included: the androgen, aryl hydrocarbon, oestrogen alpha/beta, glucocorticoid, mineralocorticoid, 
thyroid alpha/beta liver X and the peroxisome proliferator-activated receptor gamma (PPAR-γ), as well 
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as the enzymes cytochrome P450 3A4 and 2A13. Toxic potential is estimated automatically by 
simulating the interactions with the macromolecular targets, by quantifying these interactions in terms 
individual binding affinities and combining the flexible docking routine with multidimensional QSAR. 
The technology is accessible over the Internet (http://www.biograf.ch/). 
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Table 4. Some examples of in silico models for the prediction of ER and AR binding

Reference Endpoint Method / type of model Dataset size and 
applicability

Taha et al. (2010) ER• binding Pharmacophore modeling by
CATALYST

Training set:119 compounds; 
Test set: 23 compounds 

Salum et al. (2008) binding affinity 
values for both 
ERα and ER•

3D QSAR: CoMFA and 
GRID

81 hER modulators

So •derholm et al. (2008) AR binding 3D QSAR and docking 219,680 compounds from 
Asinex commercial library 
(http://www.asinex.com).

Vinggaard et al.
(2008)

Human AR
binding

MultiCASE analysis to 
identify the most 
representative chemical 
fragments responsible for 
the AR antagonism

Training consisting of 523 
chemicals covering a wide 
range of chemical structures 
(e.g., organochlorines and 
polycyclic aromatic 
hydrocarbons) and various 
functions (e.g., natural 
hormones, pesticides, 
plastizicers, plastic additives, 
brominated flame retardants, 
and roast mutagens)

Islam et al. (2008) ER binding Pharmacophore by Catalyst 35 compounds in the training 
set plus 102 compounds in the 
test set.

Salum et al. (2007) ERα modulators 3D QSAR (CoMFA) and 2D 
Hologram QSAR

Two training sets containing 
either 127 or 69 compounds

Serafimova et al. (2007) Human ER binding COmmon REactivity 
PAttern (COREPA) 
modeling approach

645 chemicals included 497 
steroid and environmental 
chemicals

Netzeva et al. (2006) Oestrogen-
responsive gene 
expression in 
vitro reporter 
gene assay.

Classification tree 117 aromatic compounds 
published including
bisphenols, benzophenones, 
flavonoids, biphenyls, 
phenols, and other aromatic 
chemicals

Tamura et al. (2006) AR binding 3D QSAR (CoMFA) 35 chemicals for antagonists 
model and 13 chemicals for 
agonist and antagonist activity 
models

Saliner et al. (2006) Human ERα
binding

Models developed using 
quantum similarity methods

117 aromatic chemicals

Ghafourian & Cronin 
(2005)

Rat ER binding TSAR 3D and 2D 
descriptors, PLS analysis by 
SIMCA-P, cluster analysis 
in MINITAB

131 chemicals from NCTR 
dataset

Vedani et al. (2005) Rat ER binding Protein Modeling and 6D-
QSAR

106 compounds
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Reference Endpoint Method / type of model Dataset size and 
applicability

Lill et al. (2005) Aryl hydrocarbon, 
ER, AR binding 
affinity.

Multi-dimensional QSAR: 
Quasar and Raptor

Database containing 121 Aryl 
hydrocarbon compounds (91 
training and 30 external test), 
116 ER  (93/23) and 72 AR 
(56/16)

Demyttenaere-
Kovatcheva et al. (2005)

ER • and • CoMFA Diphenolic Azoles: 72 in 
training and 32 in test set

Marini et al. (2005) ER binding Various multivariate 
methods e.g. a back-
propagation neural network

132 heterogeneous 
compounds

Hong et al. (2005) ER binding Decision forest 232 structurally diverse 
compounds, validated using a 
test set of 463 compounds

Kurunczi et al. (2005) Rat ER binding Partial least-squares (PLS) 
model

45 

Akahori et al. (2005) Human ERα
binding

A two-step QSAR using 
discriminant and multilinear 
regression (MLR) analyses. 

alkylphenols, phthalates, 
diphenylethanes and 
benzophenones

Mukherjee et al. (2005) ER binding QSAR based on multiple 
linear regression

25 triphenylacrylonitriles

Zhao et al. (2005) AR
binding

QSARs based on multiple 
linear regression, radical 
basis function neural 
network  and support vector 
machine (SVM)

146 structurally diverse 
natural, synthetic and 
environmental chemicals 

Lill et al. (2004) ER binding Multidimensional QSAR 
(Raptor)

116 chemicals from NCTR 
dataset 

Asikainen et al. (2004) ERα and ER• 
binding

Consensus kNN QSAR calf (53), mouse (68), rat 
(130), human ER• (61), 
human ER• (61)

Tong et al. (2004) ER binding Decision Forest classifier Dataset 1 : 232 chemicals
tested in-house (131 active, 
101 inactive)
Dataset 2:, literature
compilation of 1,092 
chemicals (350 active, 736 
inactive)
Both datasets are structurally
diverse

Hong et al. (2003) Rat AR binding 3D QSAR (CoMFA) 146

Fang et al. (2001) Rat ER binding Pharmacophore by
CATALYST

232 chemicals from NCTR 
dataset

Kramer & Giesy (1999) Bovine calf uterine 
ER binding

Quantitative structure-
binding relationship (QSBR)

25 hydroxy PCBs

AR = androgen receptor; ER =  oestrogen receptor; ERα =  oestrogen receptor alpha; ER• =  oestrogen receptor beta
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6. Regulatory use of in silico predictions

In silico models for reprotoxicity endpoints and NR binding have mainly been used for setting 
priorities for testing, rather than to fill data gaps for hazard and risk assessment. 
A stepwise “four-phase” scheme for identifying oestrogenic substances was developed by the US FDA 
(Tong et al., 2004). These four steps (phases) work in a hierarchical manner to reduce the size of a 
dataset incrementally while increasing the accuracy of prediction. Within each step (phase), different 
models were selected to work in a complementary fashion in order to minimise the rate of false 
negatives. The four phases for identification of ER ligands are described below:

• Phase I: Filtering – gross structural filters for low and high molecular weight compounds (i.e. 
<94 or >1000) or the absence of a ring structure eliminate chemicals very unlikely to bind to 
ER. 

• Phase II: Active/Inactive Assignment –chemicals passing from the previous phase are 
classified into active and inactive categories. Three structural alerts, seven pharmacophore 
queries, and a Decision Tree classification model are used in parallel to discriminate active 
from inactive chemicals. 

• Phase III: Quantitative Predictions – a CoMFA model is used to make a more accurate 
quantitative activity prediction for chemicals passing from Phase II. Chemicals with higher 
predicted binding affinity are given higher priority for further evaluation in Phase IV. The 
CoMFA model demonstrated good statistical reliability in both cross-validation and external 
validation (Fang et al., 2001). 

• Phase IV: Rule-Based Decision-Making System - the final stage of the integrated system relies 
on the use of a knowledge-base (expert system) to make priority setting decisions (Fang et al.,
2001).

This stepwise approach shows how models of increasing complexity and accuracy can be used as 
successive and more accurate filters. However, the application of this approach requires specialised 
expertise to apply the CoMFA model in Phase III.
An example of how (Q)SARs can be used in classification and labelling has been reported by the 
Danish National Food Institute in Denmark (Jensen et al., 2008). They performed a screening exercise 
of 57, 014 European Inventory of Existing Chemical Substances (EINECS) chemicals by using in-
house and commercial QSAR models (mainly MultiCASE) in order to identify possible reprotoxicants. 
Three QSAR models were used for reproductive toxicity for the endpoints teratogenic risk to humans, 
dominant lethal effect in rodents and Drosophila melanogaster sex-linked recessive lethal effect. In 
addition, the chemicals were also screened by using three models for endocrine activity. Chemicals 
were considered predicted positive for reproductive toxicity if a positive prediction was obtained in 
any of the models within the applicability domain. On this basis, 5240 EINECS chemicals (9.2% of the 
chemicals screened) were predicted as reprotoxicants by one or more of the models. The authors also 
interpreted the model outputs in terms of EU classifications for reproductive toxicity - category Xn 
(Harmful) and R63 (Possible risk of harm to the unborn child). The list of chemicals with EU 
classifications suggested on the basis of QSAR, have been submitted to the Danish EPA to support a 
future update of the advisory classification list (which industry can use to support the self-
classification of chemicals).
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7. Conclusions

At present, the availability of (Q)SARs for reprotoxicity endpoints (excluding models related to 
endocrine activity) is limited as a result of the diversity and biological complexity of the endpoints, 
and the paucity of data suitable for modelling. Available models are potentially useful as a means of 
supporting hazard identification and priority setting, but not yet for the establishment of toxic 
potencies for use in risk assessment.

Given the nature of the reprotoxicity endpoints, it is unlikely that an entirely structure-based approach 
will be capable of fully describing and predicting the in vivo effects. Thus, available models should not 
be used in isolation but to contribute to WoE assessments, and to guide experimental testing, where 
necessary. Batteries of models and in vitro tests will need to be developed, and this has been the aim of 
an EU-funded Reprotect project (http://www.reprotect.eu/). It is also unlikely that the combined use of 
in vitro methods and QSAR analysis will be able to completely replace vertebrate animal testing, but it 
should increasingly be possible to reduce it.
At the current state of development, it is not possible to give clear recommendations on how to use the 
results of models for reprotoxicity endpoints. For short-term progress (next 3 years), it is 
recommended that further research on the regulatory applicability of current models is performed, for 
example along the lines of the Danish EPA study (Jensen et al., 2008). Further work will also need to 
be aimed at the development and assessment of integrated strategies including in vitro data as well as 
in silico models.
The future development of (Q)SAR models and databases will also depend on the development of a 
standardised vocabulary for describing the plethora of reprotoxic effects at different levels of 
biological organisation. ILSI and Leadscope have already started such an initiative. In relation to 
databases, an important achievement has been the construction, from publicly available information 
sources, of the US FDA’s weight-of-evidence (WOE) Reprotox database suitable for QSAR modelling 
(Matthews et al., 2007a, 2007b).
In the longer term (5 years and more), the development of systems biology approaches incorporating 
“omic” and HTS data is likely to become increasingly important. Preliminary investigations have 
started, for example in connection with the US ToxCast initiative (Martin et al., 2009; Knudsen et al., 
2009). It is too early to judge whether this approach, which reflects a shift from modelling apical 
endpoints to toxicity pathways, will ultimately be useful in the routine regulatory assessment of 
chemicals.
In contrast to reprotoxicity, there is an extensive and growing range of software and literature models 
for predicting endocrine-related activities, and especially binding to the ER and AR receptors. In many 
cases, these models are at the research stage and require specialised expertise to recreate them in 
molecular modelling software. However, there are a number of potentially useful models, including 
simple decision tree approaches (e.g. OECD, 2009) as well as commercial models (e.g. the 
VirtualToxLab approach; Vedani et al., 2009).  One of the main challenges here is to develop agreed 
approaches for interpreting model results for regulatory applications other than priority setting.
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