256 research outputs found

    Exact spectral function of a Tonks-Girardeau gas in a lattice

    Full text link
    The single-particle spectral function of a strongly correlated system is an essential ingredient to describe its dynamics and transport properties. We develop a general method to calculate the exact spectral function of a strongly interacting one-dimensional Bose gas in the Tonks-Girardeau regime, valid for any type of confining potential, and apply it to bosons on a lattice to obtain the full spectral function, at all energy and momentum scales. We find that it displays three main singularity lines. The first two can be identified as the analogs of Lieb-I and Lieb-II modes of a uniform fluid; the third one, instead, is specifically due to the presence of the lattice. We show that the spectral function displays a power-law behaviour close to the Lieb-I and Lieb-II singularities, as predicted by the non-linear Luttinger liquid description, and obtain the exact exponents. In particular, the Lieb-II mode shows a divergence in the spectral function, differently from what happens in the dynamical structure factor, thus providing a route to probe it in experiments with ultracold atoms.Comment: 10 pages, 3 figure

    Decoherence in a fermion environment: Non-Markovianity and Orthogonality Catastrophe

    Get PDF
    We analyze the non-Markovian character of the dynamics of an open two-level atom interacting with a gas of ultra-cold fermions. In particular, we discuss the connection between the phenomena of orthogonality catastrophe and Fermi edge singularity occurring in such a kind of environment and the memory-keeping effects which are displayed in the time evolution of the open system

    Quantum Otto cycle with inner friction: finite-time and disorder effects

    Get PDF
    The concept of inner friction, by which a quantum heat engine is unable to follow adiabatically its strokes and thus dissipates useful energy, is illustrated in an exact physical model where the working substance consists of an ensemble of misaligned spins interacting with a magnetic field and performing the Otto cycle. The effect of this static disorder under a finite-time cycle gives a new perspective of the concept of inner friction under realistic settings. We investigate the efficiency and power of this engine and relate its performance to the amount of friction from misalignment and to the temperature difference between heat baths. Finally we propose an alternative experimental implementation of the cycle where the spin is encoded in the degree of polarization of photons.Comment: Published version in the Focus Issue on "Quantum Thermodynamics

    Structural change of vortex patterns in anisotropic Bose-Einstein condensates

    Get PDF
    We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing anisotropy of the trapping potential. Once the rotational symmetry is broken, we find that the vortex system undergoes a rich variety of structural changes, including the formation of zig-zag and linear configurations. These spatial re-arrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the anisotropy parameter. The existence of such structural changes opens up possibilities for the coherent exploitation of effective many-body systems based on vortex patterns.Comment: 5 pages, 4 figure

    Critical assessment of two-qubit post-Markovian master equations

    Get PDF
    A post-Markovian master equation has been recently proposed as a tool to describe the evolution of a system coupled to a memory-keeping environment [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101 (R) (2005)]. For a single qubit affected by appropriately chosen environmental conditions, the corresponding dynamics is always legitimate and physical. Here we extend such situation to the case of two qubits, only one of which experiences the environmental effects. We show how, despite the innocence of such an extension, the introduction of the second qubit should be done cum grano salis to avoid consequences such as the breaking of the positivity of the associated dynamical map. This hints at the necessity of using care when adopting phenomenologically derived models for evolutions occurring outside the Markovian framework.Comment: 7 pages, 1 figure, RevTeX4. Close to published versio

    Subcutaneous administration of tocilizumab is effective in myointimal hyperplasia remodelling in refractory Takayasu arteritis

    Get PDF
    Takayasu arteritis (TA) is a chronic inflammatory disease of unknown origin that involves large and mediumsized arteries, primarily the aorta and its major branches. TA is a therapeutic challenge because corticosteroids and conventional immunosuppressive agents are not always effective or safe. Interleukin 6 (IL-6) has emerged as a key cytokine in the pathogenesis of TA and its serum levels have been shown to well correlate with disease activity. We report a 19 years old female patient with TA refractory to conventional immunosuppressive agents, successfully treated with subcutaneous tocilizumab, a humanized monoclonal antibody against IL-6 receptor, in which ultrasonography (US) was used as imaging tool to follow up the patient. Currently, clinical indices of disease activity, inflammatory markers, carotid intima media thickness (cIMT) as well as carotid pulse wave velocity (cPWV) normalised, while the prednisone dosage has been tapered. Tocilizumab appears to be a good option in refractory TA, with a remarkable steroid-sparing effect. In addition, it seems to have a favourable effect on endothelial function, as it improved cIMT and PWV

    The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance

    Get PDF
    Drought stress can impair leaf hydraulic conductance (Kleaf), but the relative contribution of changes in the efficiency of the vein xylem water pathway and in the mesophyll route outside the xylem in driving the decline of Kleaf is still debated. We report direct measurements of dehydration-induced changes in the hydraulic resistance (R=1/K) of whole leaf (Rleaf), as well as of the leaf xylem (Rx) and extra-vascular pathways (Rox) in four Angiosperm species. Rleaf, Rx, and Rox were measured using the vacuum chamber method (VCM). Rleaf values during progressive leaf dehydration were also validated with measurements performed using the rehydration kinetic method (RKM). We analysed correlations between changes in Rx or Rox and Rleaf, as well as between morpho-anatomical traits (including dehydration-induced leaf shrinkage), vulnerability to embolism, and leaf water relation parameters. Measurements revealed that the relative contribution of vascular and extra-vascular hydraulic properties in driving Kleaf decline during dehydration is species-specific. Whilst in two study species the progressive impairment of both vascular and extra-vascular pathways contributed to leaf hydraulic vulnerability, in the other two species the vascular pathway remained substantially unaltered during leaf dehydration, and Kleaf decline was apparently caused only by changes in the hydraulic properties of the extra-vascular compartment

    Exact Spectral Function of a Tonks-Girardeau Gas in a Lattice

    Get PDF
    The single-particle spectral function of a strongly correlated system is an essential ingredient to describe its dynamics and transport properties. We develop a method to evaluate exactly the spectral function for a gas of one-dimensional bosons with infinitely strong repulsions valid for any type of external confinement. Focusing on the case of a lattice confinement, we find that the spectral function displays three main singularity lines. One of them is due uniquely to lattice effects, while the two others correspond to the Lieb-I and Lieb-II modes occurring in a uniform fluid. Differently from the dynamical structure factor, in the spectral function the Lieb-II mode shows a divergence, thus providing a route to probe such mode in experiments with ultracold atoms
    • …
    corecore