3 research outputs found

    The extinction of land mammals during the future assembly of the next supercontinent

    Get PDF
    Mammals have dominated Earth for approximately 55 Myr thanks to their adaptations and resilience to warming and cooling during the Cenozoic. All life will eventually perish in a runaway greenhouse once absorbed solar radiation exceeds the emission of thermal radiation in several billions of years. However, conditions rendering the Earth naturally inhospitable to mammals may develop sooner because of long-term processes linked to plate tectonics (short-term perturbations are not considered here). In ~250 Myr, all continents will converge to form Earth’s next supercontinent, Pangea Ultima. A natural consequence of the creation and decay of Pangea Ultima will be extremes in due to changes in volcanic rifting and outgassing. Here we show that increased, solar energy (F⨀; approximately +2.5% W m−2 greater than today) and continentality (larger range in temperatures away from the ocean) lead to increasing warming hostile to mammalian life. We assess their impact on mammalian physiological limits (dry bulb, wet bulb and Humidex heat stress indicators) as well as a planetary habitability index. Given mammals’ continued survival, predicted background levels of 410–816 ppm combined with increased F⨀ will probably lead to a climate tipping point and their mass extinction. The results also highlight how global landmass configuration, and F⨀ play a critical role in planetary habitability

    Impact of aerosols and adverse atmospheric conditions on the data quality for spectral analysis of the H.E.S.S. telescopes

    Get PDF
    The Earth’s atmosphere is an integral part of the detector in ground-based imaging atmospheric Cherenkov telescope (IACT) experiments and has to be taken into account in the calibration. Atmospheric and hardware-related deviations from simulated conditions can result in the mis-reconstruction of primary particle energies and therefore of source spectra. During the eight years of observations with the High Energy Stereoscopic System (H.E.S.S.) in Namibia, the overall yield in Cherenkov photons has varied strongly with time due to gradual hardware aging, together with adjustments of the hardware components, and natural, as well as anthropogenic, variations of the atmospheric transparency. Here we present robust data selection criteria that minimize these effects over the full data set of the H.E.S.S. experiment and introduce the Cherenkov transparency coefficient as a new atmospheric monitoring quantity. The influence of atmospheric transparency, as quantified by this coefficient, on energy reconstruction and spectral parameters is examined and its correlation with the aerosol optical depth (AOD) of independent MISR satellite measurements and local measurements of atmospheric clarity is investigated
    corecore