45 research outputs found

    Impacts of large-scale climatic disturbances on the terrestrial carbon cycle

    Get PDF
    BACKGROUND: The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO(2 )growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical model of the terrestrial biosphere to differentiate the effects of temperature and precipitation on net primary production (NPP) and heterotrophic respiration (Rh) during the two largest anomalies in atmospheric CO(2 )increase during the last 25 years. One of these, the smallest atmospheric year-to-year increase (largest land carbon uptake) in that period, was caused by global cooling in 1992/93 after the Pinatubo volcanic eruption. The other, the largest atmospheric increase on record (largest land carbon release), was caused by the strong El Niño event of 1997/98. RESULTS: We find that the LPJ model correctly simulates the magnitude of terrestrial modulation of atmospheric carbon anomalies for these two extreme disturbances. The response of soil respiration to changes in temperature and precipitation explains most of the modelled anomalous CO(2 )flux. CONCLUSION: Observed and modelled NEE anomalies are in good agreement, therefore we suggest that the temporal variability of heterotrophic respiration produced by our model is reasonably realistic. We therefore conclude that during the last 25 years the two largest disturbances of the global carbon cycle were strongly controlled by soil processes rather then the response of vegetation to these large-scale climatic events

    The global spectrum of plant form and function

    Full text link

    Simulated changes in vegetation distribution, land carbon storage, and atmospheric CO2 in response to a collapse of the North Atlantic thermohaline circulation

    Get PDF
    Measurements on glacial ice show that atmospheric CO2 varied by 20ppmv with large iceberg discharges into the North Atlantic (NA) and themost prominent Dansgaard/ Oeschger (D/O) climate fluctuations. CO2variations during less pronounced D/O events were smaller than a fewppm. The D/O fluctuations have been linked to changes in the NAThermohaline Circulation (THC). Here, we analyse how abrupt changes inthe NA THC affect the terrestrial carbon cycle by forcing theLund-Potsdam-Jena Dynamic Global Vegetation Model with climateperturbations from freshwater experiments with the ECBILT-CLIOgeneral circulation model. Changes in the marine carbon cycle are notaddressed. Modelled NA THC collapsed and recovered after about amillennium in response to prescribed freshwater forcing. The initialcooling of several Kelvin over Eurasia causes a reduction ofextant boreal and temperate forests and a decrease in carbon storage inhigh northern latitudes, whereas improved growing conditions andslower soil decomposition rates lead to enhanced storage inmid-latitudes. The magnitude and evolution of global terrestrialcarbon storage in response to abrupt THC changes depends sensitivelyon the initial climate conditions. Terrestrial storage varies between-67 and +50 PgC for arange of experiments that start at different times during the last21,000 years. Simulated peak-to-peak differences in atmospheric CO2and d13C are between {6 and 18 ppmv} and 0.180.18 and 0.300.30~\mypermil and compatible with the ice core CO2 record
    corecore