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Abstract 

Materially-closed, energetically-open biological systems are ideal for investigating 

biotic feedbacks as they allow for a simultaneous two-way feedback loop between 

the biotic and abiotic components to take place. However, they have been avoided 

in ecological research due to the challenge of achieving sustainable and sealed 

model systems. Here we show that using pro rata amounts for the main terrestrial 

carbon (C) pools allows for the establishment of a system with balanced the 

autotrophic and heterotrophic C fluxes. Such systems are sufficiently stable to  

allow for an investigation of biotic C feedbacks. Using this approach, we tested an 

alternative way of assessing the impact of elevated CO2 and temperature on the 

biotic C feedbacks in a materially closed Soil-Vegetation-Atmosphere System 

(mcSVAS). The results suggest that without nutrient and water limitation, the 

short-term biotic responses of the SVASs could potentially buffer a temperature 

increase of 2.3
o
C without significant positive feedbacks to atmospheric CO2. Whilst 

representing a simplified version of land C dynamics, such closed system research 

represents an important new form of an in situ test-bed and model validation of 

plant and soil biotic responses to environmental changes. 

A major uncertainty in predicting future atmospheric CO2 concentrations and 

temperatures, second only to the uncertainty in predicting future anthropogenic 

emissions, is the magnitude and sign of terrestrial carbon (C) feedbacks (3). Realistic 

parameterisation of the plant and soil feedbacks to environmental change lies at the 

heart of land C models, but despite recent improvements in modelling, uncertainty 
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remains large because many aspects of the soil‐vegetation‐atmosphere interactions are 

poorly understood (4). 

An alternative and complementary, yet underexplored approach to investigate 

the impact of biotic feedbacks on the C cycle is to use physical analogues setup in 

materially-closed, energetically-open systems. Materially-closed systems are well suited 

and relevant to study biotic C responses to climate change. The ability to form and 

sustain bi-directional feedback loop between biotic and abiotic components is inherent 

to closed systems only and cannot be observed when materially open approaches. 

Furthermore, close system approachs are ideal for mass balance studies, but also for 

detecting subtle feedbacks. The element of closure allows for an accumulation of 

substances which would normally be beyond the resolution of conventional materially 

open experimental approaches (Nelson, et al. 2003b, Dempster 2008). 

In the research described in this paper, we set out to construct simplified 

materially closed but energetically open Soil-Vegetation-Atmosphere Systems 

(mcSVASs) to estimate the plant and soil feedbacks to elevated CO2 and temperature. 

Such an approach has often been avoided in ecological research, mainly due to the 

difficulty of achieving total closure, whilst also balancing the autotrophic and 

heterotrophic fluxes and hence achieving sustainable model systems. To date, the only 

attempt to establish an analogue materially-closed model system of the biosphere 

(Biosphere 2) (10) indicated the severe consequences of failing to appropriately control 

the atmospheric CO2 concentrations through managing and representing correctly the 

major C reservoirs. Our mcSVASs were setup with scaled-down C pools of best 

estimates of pre-industrial global terrestrial C in soil, plant and atmosphere. Preliminary 
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runs aimed at exploring the importance of the C stocks for achieving stable systems 

showed that recreating the pro rata C stocks of the terrestrial C cycle represents an 

important starting point (Supplementary Fig 1) for balancing the autotrophic and 

heterotrophic C fluxes. This was achieved by setting the initial atmospheric 

concentration of CO2 to ~ 280 p.p.m.v. with corresponding pro rata plant and soil C 

stocks, thus  creating an analogue system consisting of the pre-industrial global 

atmospheric (560 Gt C), vegetation (900 Gt C) and soil (2011 Gt C) C pools, falling 

within the upper range of available global C estimates (12, 13).  

The mcSVASs were established in fifteen transparent growth chambers (with an 

internal volume of 120 l) using state-of-the-art glove-box technology to ensure a 

materially closed environment (Fig.1), and each was housed within an individual and 

climate controlled walk-in growth chamber (11). The design enabled non-invasive 

monitoring and control of temperature and atmospheric CO2 concentrations with 

external control of photosynthetically active radiation following a day-night regime of 

14-10 h (see materials and methods for more details). All units were initially maintained 

isothermally at 15ºC ± 0.2 s.e.m., a temperature close to the estimated pre-industrial 

global average temperature of 13.7ºC (1). Subsequently, three treatments with five 

replicated mcSVASs (i.e. n = 5) used in each scenario, were performed in order to 

assess the plant and soil biotic C feedbacks to elevated CO2 and temperature. These 

were:  (i) a control treatment with no CO2 additions and no climate sensitivity 

(isothermal 15ºC), hereafter referred to as the control scenario (S15); (ii) a scenario with 

simulated CO2 additions (18p.p.m.v. CO2  every second day, equivalent of the IPCC B1 

scenario of ~ 930 Gt C cumulative by year 2100) (16) and no climate sensitivity 

(isothermal 15ºC ), hereafter referred to as the CO2  addition scenario (S15CO2); and (iii) 
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a scenario with the same simulated CO2 additions as in (ii), but with emulated 

temperature sensitivity to CO2, hereafter referred to as the emissions with feedback 

scenario (SΔ3CO2). As the atmospheric CO2 concentration rose or fell in this treatment, 

an accurate internal CO2-temperature feedback control (± 0.2ºC s.e.m.) enabled the 

temperature within the mcSVASs to be externally regulated (increased or decreased 

accordingly). Temperatures were adjusted according to a temperature sensitivity to CO2, 

based on the most likely ‘climate sensitivity’ of 3ºC (1, 14), defined as the equilibrium 

response of global mean temperature to doubling the atmospheric CO2 concentration 

(ΔT2) (15).  

Results and discussion 

The C mass balance analysis performed at the end of the experiment indicates that 

mcSVASs were successful in conserving the initially introduced C dynamics (Table 1). 

Similar to the trial runs (Supplementary Fig. S1), two weeks following chamber closure, 

the mcSVASs with the S15 scenario showed stabilised net C flux dynamics, i.e. the 

weekly slope of atmospheric CO2 change was not different from zero (Table S1, Fig. 

2A, B) and the atmospheric CO2 concentrations showed a strong diurnal pattern, driven 

by the presence or absence of light. In the S15CO2 and SΔ3CO2 treatments, despite an initial 

increase in the atmospheric CO2 content, the atmospheric CO2 concentration also 

stabilised at just below 500 p.p.m.v. starting with the experimental week 7 (Fig. 2A, B, 

Table S1). Furthermore, the stabilisation of the atmospheric CO2 concentration in the 

SΔ3CO2 treatment took place despite a temperature increase of 2.3ºC and was just 

marginally but not significantly higher than in the S15CO2 treatment. The increase in 

temperature in the SΔ3CO2 treatment led to higher total (plant and soil) dark respiration of 
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the mcSVASs, but only after seven weeks of CO2 additions and temperature increase; 

the temperature sensitivity of the dark respiration (Q10) was around 2. In contrast, in the 

S15CO2 treatment the dark respiration was not different from the control (Fig 2C). The 

stabilisation of atmospheric CO2 concentration in the S15CO2 and SΔ3CO2 treatments was 

explained by the significantly higher plant CO2 uptake relative to the S15 treatment after 

five weeks (Fig. 2D, Table S1). Furthermore, CO2 uptake in the SΔ3CO2 scenario was 

significantly higher than in the S15CO2  (Fig. 2D, Table S1). Despite enhanced total dark 

respiration in the SΔ3CO2 treatment (Fig. 2C), the enhancement of CO2 uptake via 

photosynthesis (Fig. 2D, table S2) lead to the removal of 62% of the total injected 

atmospheric C and limited the gain in atmospheric CO2 in the SΔ3CO2 relative to the 

S15CO2 treatment to only 6%. If up-scaled to the Gt C unit used as a reference for the 

establishment of the pro rata C pools in the mcSVASs, the observed sensitivity to CO2 

(i.e. the change in C uptake per atmospheric CO2 increase estimated from the 

experimental weeks 7-9) was equivalent to 2.43 Gt C/p.p.m.v. CO2. The sensitivity of 

the mcSVASs to the imposed temperature increase (i.e. the change in net C uptake per 

ºC increase) indirectly estimated from the difference between the average weekly slope 

of CO2 increase in the SΔ3CO2 and S15CO2 , was -20 Gt C/ºC. 

The capacity of the systems to recover after the cessation of ‘emissions’ was 

examined towards the end of the experiment when the CO2 addition was stopped after 

31 injections, two months after the first CO2 addition. Halting CO2 additions made 

apparent the size of the system’s C sink in the S15CO2 and SΔ3CO2 scenarios (Fig. 2B; 

Table S2). Interestingly, the recovery of atmospheric CO2 was, however, not complete 

and the temperature-disturbed systems showed a retained  memory of the perturbation 

in gross fluxes (Figs. 2A, B).  
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Our materially-closed systems, although simplistic, provide several important 

insights. Firstly, using pro rata amount of C for the main terrestrial pools it is possible to 

establish sustainable materially closed systems where the autotrophic and heterotrophic 

C fluxes are balanced, long enough to make the approach feasible for investigating 

biotic C feedbacks. Secondly, we found a strong plant-driven negative feedback on 

atmospheric CO2 — i.e. the stimulation of photosynthesis by elevated CO2 was 

increased by 33.8% in the S15CO2 . This is accompanied by an increase in dry weight 

plant biomass of 22.5% at the end of the experiment (Table 1), values which are within 

the upper range of CO2 fertilisation rates for forbs
$$

.  

Furthermore, in the SΔ3CO2  treatment where the temperature increased by up to 

2.3ºC as it was adjusted depending on the CO2 concentration, the photosynthetic rate 

increased by 64.1% (and the plant biomass by 35.6% relative to the S15  treatment)  

preventing a switch of the mcSVASs from  a net C sink to C source. Relative to the 

S15CO2 treatment this is an increase of 22.7%, equivalent to ~ 9.9% per 
o
C. This 

additional increase in C uptake in the SΔ3CO2 treatment indicates an interactive effect of 

increasing CO2 concentration and temperature. Although the review studies concerning 

the interactive effect of increasing CO2 and temperature on plant growth found little 

evidence of large differences in response to CO2 at different temperatures due to 

multiple confounding factors (Morison & Lawlor, 1999), there is a strong theoretical 

basis for expecting interactions between CO2 and temperature effects on 

photosynthesis
$$

, which has been revealed by experimental research and supported by a 

strong, mechanistic framework.   
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  The results from our mcSVATs suggest that without nutrient and water 

limitations, the short-term biotic responses of a SVAT system could potentially buffer a 

temperature increase of 2.3
o
C without significant positive respiration feedbacks to the 

atmospheric CO2.  However, we recognise that our model systems are simplistic and 

several caveats need to be pointed out. The experimental time may be too short to 

include potential acclimation responses to elevated CO2 and temperature, especially 

where frequent injection of CO2 was used to simulate anthropogenic emissions. 

Additionally, the systems were not nitrogen or water limited. Both of these compounds  

are known to constrain soil and plant responses to elevated CO2 and temperature. In 

addition, the model plant we used is a herbaceous species, whose photosynthetic 

stimulation by elevated CO2 is generally considered to be lower than that of trees (24), 

but higher than that of C4 plants (Ehleringer et al 1991).  

However, in a physical analogue there is no need to digitally parameterise key 

processes such as soil Q10s and plant CO2 uptake. In addition, it is worth noting that 

computer models can only parameterise feedbacks that are well understood and 

quantified. In contrast, any unknown plant or soil feedbacks will still inherently take 

place in physical models if the scale of representation allows; to our knowledge the 

parameterisation of the CO2 fertilisation effect has never been derived from analogue 

systems where the plant response directly impacts on the ambient CO2 concentration 

and temperature, which in turn is known to feed back on the photosynthesis rate. The 

results from our materially closed approach indicate the urgent need to better understand 

the biotic controls and feedbacks in the global climate system. Whilst the materially 

closed approach has been so far avoided in ecological research due to its multiple 

challenges, we argue that it has the potential to uncover key properties of the processes 
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that drive global biotic feedbacks which will ultimately help to predict future Earth 

system changes using C-cycle coupled general circulation models with more certainty. 

Indeed, the construction of mcSVASs incorporating elements of global biotic and 

climatic heterogeneity represents a major, but achievable, challenge. These 

enhancements would increase the realism of the mcSAVSs and enable further insights 

into the mechanisms controlling the global C cycle.  

Materials and methods 

Materially-closed, energetically-open SVASs. Transparent chambers manufactured 

from welded polycarbonate (10 mm wall thickness and 120 l volume, Supplementary 

Fig. S1) were setup within the Ecotron facility at Silwood Park (26). Each chamber was 

connected to a separate measuring cell mounted under a rotating open-path infra-red gas 

analyser (OP-2 Open Path CO2/ H2O Analyser, ADC Bioscientific Ltd., Herts, UK), 

allowing non-invasive and continuous real time air CO2 concentration measurements 

(11). Temperature, atmospheric pressure, RH, O2 concentration, soil moisture and PAR 

were continuously measured and recorded by the TREND 963 data logging supervisor 

(Trend Control Systems Ltd., Horsham, UK). The temperature was controlled by 

continuously operating a heater and a chiller, both integrated within each EAC. The 

moisture content of the soil/sand mixture was monitored by a soil moisture probe (Theta 

Probe, Delta-T Devices Ltd., Cambridge, UK) and homeostatically maintained between 

35-60% by triggering watering events of ~ 20 ml of water from an internal reservoir of 

280 ml each time the soil moisture dropped below 35%.  

Leakage estimates. Although the chambers were constructed to full anaerobic gas 

chamber standards, maintaining perfectly materially closed systems over the course of 
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the long-term experiments is a major engineering challenge. Internal and external 

pressure changes were used to calculate the volume of air which was exchanged with 

the outside environment over the course of the experiments using the combined ideal 

gas law. Continuous CO2 recordings in- and outside the boxes allowed for the 

calculation of the amount of C exchange and net contamination for each experimental 

unit over the course of the experiments (0.00003 ± 0.00017 g C s.e.m). The net 

deviation from the targeted C amounts at the end of the experiment was below 4% 

(Table 1) and was most likely introduced during the experimental setup as it is 

intrinsically difficult to introduce precise C amounts as living vegetation. 

Biological components. We aimed to match pre-industrial ratios of soils, terrestrial 

vegetation, and atmospheric carbon (Table 1). 2.85 g of dry arable soil (2.13% C, 0.16% 

N) was used together with 0.528 g FW (14% DW, 38% C DW, 1.85% N DW) of the C3 

plant Pilea glauca (Urticaceae). Selected after screening a total of eight plant species P. 

glauca was selected as the experimental plant species because of its slow growth rate 

and known suitability as a durable species in ‘bottle gardens’. A carbon-free sand (550 

g, <0.001% C, <0.01% N) was used as additional inert matrix for plant roots. External 

lighting was provided by a mixture of halogen and fluorescent tubes with PAR adequate 

for this understory plant species (120 μmoll m
-2

 s
-1

). 

Statistical analysis. All mcSVASs had independent temperature control and were 

consequently treated as true replicates. The R statistical package (version 2.7.1) was 

used to perform repeated measure ANOVA on the effects of temperature treatments on 

the weekly slope of CO2 concentration and the weekly CO2 uptake (photosynthesis) and 

release (night-time respiration) rates. Individual ANOVAs followed by contrast analysis 
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were performed for each week to test if the response of the treatments including 

elevated temperature and CO2-temperature feedbacks differed from the control. 
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Figure legends. 

Fig. 1. Photograph of one materially-closed Terrestrial Analogue Chamber (TAC). (A) 

Plant (Pilea glauca). (B) Pot containing carbon free sand and soil. (C) Soil moisture 

probe. (D) Light (PAR) sensor. (E) Pressure and temperature sensors. (F) Heater. (G) 

Chiller. (H) Water reservoir. (I) Peristaltic irrigation pump. (J) Air pump providing 

continuous air circulation between TACs and the open-path infrared gas analyser. (K) 

Fans maintaining continuous internal air mixing. 

Fig. 2. Atmospheric CO2 concentrations, slopes of CO2 concentration change, daily 

magnitudes of CO2 release (respiration) and uptake (photosynthesis) in the earth 

analogue chambers (TACs) for the isothermal 15ºC (S15), isothermal 15ºC + CO2 

additions (S15CO2) and CO2 additions + feedback ΔT2=3 (SΔ3CO2) scenarios (n = 5). (A) 

Average atmospheric CO2 concentrations and average temperature changes for the 

different periods of the experiment. CO2 emissions were simulated by injecting a 

constant amount of pure CO2 calculated to result in a 15 p.p.m.v. CO2 increase every 

second day. The temperature in the EACs which included the CO2 temperature feedback 

was externally adjusted every second day (between CO2 injections) as a function of the 

atmospheric CO2 concentration, assuming a climate sensitivity of 3ºC. (B) Average 

daily slope of CO2 concentration change (± s.e.m.) for the different periods of this 

experiment. The ‘recovery phase’ represents the last 16 days of the experiment after the 

cessation of the CO2 additions. (C) Average daily rate of CO2 release (night-time 
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respiration ± s.e.m.) for the different periods of the experiment. (D) Average daily rate 

of CO2 uptake (photosynthesis ± s.e.m.) for the different periods of the experiment. 
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Table 1. Carbon (C) mass balance comparing the initial amounts of C in the main pools 

with those found at the end of the experiment in the isothermal 15ºC (S15), isothermal 

15ºC + CO2 additions (S15CO2) and CO2 additions + feedback ΔT2=3 (SΔ3CO2) scenarios 

within each mcSVAS treatment (n = 5). 

 

Time of 

measurement 

Initial C amounts 

(g)  

C amounts (g) at the end of the experiment for each 

temperature treatment  

Source/Scenario    S15   S15CO2  SΔ3CO2  

Air 0.0172  0.0183 ± 0.002  0.0253 ± 0.003  0.0260 ± 0.003  

CO2. Emissions na  na  0.03  0.03  

Plant 0.0400  0.0620 ± 0.004  0.0760 ± 0.07  0.0841 ± 0.07  

Soil 0.0710  0.0505 ± 0.003  0.0510 ± 0.001  0.0510 ± 0.003  

Contamination na  0.0008  0.0001  <0.0001  

Total 0.1282  0.1315 ± 0.006  0.1523 ± 0.003  0.1609 ± 0.004  

Unexplained na  0.0049  -0.0059  0.0027   
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Figure 2 
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Supplementary Figure S1 

 

 

 

 

 


