22,782 research outputs found

    Numerical Evidence for Robustness of Environment-Assisted Quantum Transport

    Full text link
    Recent theoretical studies show that decoherence process can enhance transport efficiency in quantum systems. This effect is known as environment-assisted quantum transport (ENAQT). The role of ENAQT in optimal quantum transport is well investigated, however, it is less known how robust ENAQT is with respect to variations in the system or its environment characteristic. Toward answering this question, we simulated excitonic energy transfer in Fenna-Matthews-Olson (FMO) photosynthetic complex. We found that ENAQT is robust with respect to many relevant parameters of environmental interactions and Frenkel-exciton Hamiltonian including reorganization energy, bath frequency cutoff, temperature, and initial excitations, dissipation rate, trapping rate, disorders, and dipole moments orientations. Our study suggests that the ENAQT phenomenon can be exploited in robust design of highly efficient quantum transport systems.Comment: arXiv admin note: substantial text overlap with arXiv:1104.481

    Kinetic Monte Carlo simulations inspired by epitaxial graphene growth

    Full text link
    Graphene, a flat monolayer of carbon atoms packed tightly into a two dimensional hexagonal lattice, has unusual electronic properties which have many promising nanoelectronic applications. Recent Low Energy Electron Microscopy (LEEM) experiments show that the step edge velocity of epitaxially grown 2D graphene islands on Ru(0001) varies with the fifth power of the supersaturation of carbon adatoms. This suggests that graphene islands grow by the addition of clusters of five atoms rather than by the usual mechanism of single adatom attachment. We have carried out Kinetic Monte Carlo (KMC) simulations in order to further investigate the general scenario of epitaxial growth by the attachment of mobile clusters of atoms. We did not seek to directly replicate the Gr/Ru(0001) system but instead considered a model involving mobile tetramers of atoms on a square lattice. Our results show that the energy barrier for tetramer break up and the number of tetramers that must collide in order to nucleate an immobile island are the important parameters for determining whether, as in the Gr/Ru(0001) system, the adatom density at the onset of island nucleation is an increasing function of temperature. A relatively large energy barrier for adatom attachment to islands is required in order for our model to produce an equilibrium adatom density that is a large fraction of the nucleation density. A large energy barrier for tetramer attachment to islands is also needed for the island density to dramatically decrease with increasing temperature. We show that islands grow with a velocity that varies with the fourth power of the supersaturation of adatoms when tetramer attachment is the dominant process for island growth

    Global crop production forecasting data system analysis

    Get PDF
    The author has identified the following significant results. Findings led to the development of a theory of radiometric discrimination employing the mathematical framework of the theory of discrimination between scintillating radar targets. The theory indicated that the functions which drive accuracy of discrimination are the contrast ratio between targets, and the number of samples, or pixels, observed. Theoretical results led to three primary consequences, as regards the data system: (1) agricultural targets must be imaged at correctly chosen times, when the relative evolution of the crop's development is such as to maximize their contrast; (2) under these favorable conditions, the number of observed pixels can be significantly reduced with respect to wall-to-wall measurements; and (3) remotely sensed radiometric data must be suitably mixed with other auxiliary data, derived from external sources

    Capacity of nonlinear bosonic systems

    Full text link
    We analyze the role of nonlinear Hamiltonians in bosonic channels. We show that the information capacity as a function of the channel energy is increased with respect to the corresponding linear case, although only when the energy used for driving the nonlinearity is not considered as part of the energetic cost and when dispersive effects are negligible.Comment: 6 pages, 3 figure

    Gravity gradient preliminary investigations on exhibit ''A'' Final report

    Get PDF
    Quartz microbalance gravity gradiometer performance test

    Information rate of waveguide

    Full text link
    We calculate the communication capacity of a broadband electromagnetic waveguide as a function of its spatial dimensions and input power. We analyze the two cases in which either all the available modes or only a single directional mode are employed. The results are compared with those for the free space bosonic channel.Comment: 5 pages, 2 figures. Revised version (minor changes

    Cost/benefit analysis for the Operational Applications of Satellite Snowcover Observations (OASSO)

    Get PDF
    The author has identified the following significant results. The total cost associated with satellite snow cover area measurement (SATSCAM) in the Colorado ASVT was 2,050whichequatesto0.22/sqkm.Whenextrapolatedtothe2,238,890kmareaimpactedbysnowsurveyforecastingintheWesternUnitedStates,thetotalyearlycostofemployingSATSCAMisapproximately2,050 which equates to 0.22/sq km. When extrapolated to the 2,238,890 km area impacted by snow-survey forecasting in the Western United States, the total yearly cost of employing SATSCAM is approximately 493k. The estimated total benefits to hydroeletric energy production is 10myearly,withthePacificNorthwestreceivingthesmallestbenefits,andtheRioGranderegionthehighest.Irrigatedagriculturereceivesayearlytotalbenefitof10m yearly, with the Pacific Northwest receiving the smallest benefits, and the Rio Grande region the highest. Irrigated agriculture receives a yearly total benefit of 38m, with the Lower Colorado region receiving the largest per acre benefit and the Pacific Northwest receiving the lowest

    A quantum-mechanical Maxwell's demon

    Get PDF
    A Maxwell's demon is a device that gets information and trades it in for thermodynamic advantage, in apparent (but not actual) contradiction to the second law of thermodynamics. Quantum-mechanical versions of Maxwell's demon exhibit features that classical versions do not: in particular, a device that gets information about a quantum system disturbs it in the process. In addition, the information produced by quantum measurement acts as an additional source of thermodynamic inefficiency. This paper investigates the properties of quantum-mechanical Maxwell's demons, and proposes experimentally realizable models of such devices.Comment: 13 pages, Te

    Quantum theory of optical temporal phase and instantaneous frequency. II. Continuous time limit and state-variable approach to phase-locked loop design

    Full text link
    We consider the continuous-time version of our recently proposed quantum theory of optical temporal phase and instantaneous frequency [Tsang, Shapiro, and Lloyd, Phys. Rev. A 78, 053820 (2008)]. Using a state-variable approach to estimation, we design homodyne phase-locked loops that can measure the temporal phase with quantum-limited accuracy. We show that post-processing can further improve the estimation performance, if delay is allowed in the estimation. We also investigate the fundamental uncertainties in the simultaneous estimation of harmonic-oscillator position and momentum via continuous optical phase measurements from the classical estimation theory perspective. In the case of delayed estimation, we find that the inferred uncertainty product can drop below that allowed by the Heisenberg uncertainty relation. Although this result seems counter-intuitive, we argue that it does not violate any basic principle of quantum mechanics.Comment: 11 pages, 6 figures, v2: accepted by PR

    Geometrical effects on energy transfer in disordered open quantum systems

    Get PDF
    We explore various design principles for efficient excitation energy transport in complex quantum systems. We investigate energy transfer efficiency in randomly disordered geometries consisting of up to 20 chromophores to explore spatial and spectral properties of small natural/artificial Light-Harvesting Complexes (LHC). We find significant statistical correlations among highly efficient random structures with respect to ground state properties, excitonic energy gaps, multichromophoric spatial connectivity, and path strengths. These correlations can even exist beyond the optimal regime of environment-assisted quantum transport. For random configurations embedded in spatial dimensions of 30 A and 50 A, we observe that the transport efficiency saturates to its maximum value if the systems contain 7 and 14 chromophores respectively. Remarkably, these optimum values coincide with the number of chlorophylls in (Fenna-Matthews-Olson) FMO protein complex and LHC II monomers, respectively, suggesting a potential natural optimization with respect to chromophoric density.Comment: 11 pages, 10 figures. Expanded from the former appendix to arXiv:1104.481
    corecore