## General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.



# global crop production forecasting DATA SYSTEM ANALYSIS 

PETER A. CASTRUCCIO, HARRY L. LOATS, DONAID G. LLOYD

FINAL REPORT

JANUARY 1978

CONTRACT NAS8-32408

PREPARED FOR

THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MARSHALL SPACE FLIGHT CENTER MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

## BY

P.O. BOX 225

GAMBRILLS, MD 21054

## TABLE OF CNNTENTS

PAGE

## FOREWORD

1.0 SUMMARY, RESULTS AND CONCLUSIONS ..... 1
2.0 SCENARIO ..... 6
2.1 Significance of Global Crop Survey and Forecast ..... 6
2.2 World Scenarios ..... 7
2.3 The U.S. Scenario ..... 9
2.4 Derivation of the Crops to be Surveyed ..... 10
2.5 Derivation of the Countries to be Surveyed ..... 12
2.5.1 Logic ..... 12
2.5.2 Procedures for Derivation of the Countries to be Surveyed ..... 15
2.5.3 Recapitulation of Crops and Countries Candidates for Survey ..... 19
2.5.4 The Effect of Substitution in Human Nutrition ..... 22
2.5.5 The Effect of Substitution in Animal Feed ..... 24
2.6 Effect of Global Crop Forecast on Other U.S. Goals ..... 27
2.6.1 Effect of the Requirements to Maximize Consumer Satisfaction ..... 27
2.6.2 Role of Global Crop Foreçast as Tool of Foreign Pollcy ..... 27
2.7 The International Scenario ..... 28
3.0 SYSTEM PERFORMANCE REQUIREMENTS AND CURRENT PERFORMANCE ..... 29
3.1 Derivation of the Data System's Performance Require- ments ..... 29
3.2 Assessment of the Performance of Orbital Data Systems in Estimating Acreage ..... 32
4.0 INVESTIGATION INTO THE PHYSICAL REASONS FOR THE DISCREPANCY BETWEEN REQUIREMENTS AND PERFORMANCE37
4.1 Methodology
4.2 Results from the Analysis of the Field Spectra ..... 41
5.0 THEORY OF DISCRIMINATION FROM RADIOMETRIC DATA ..... 49
5.1 Simplified Theory ..... 49
5.2 Significance ..... 50
5.3 Selection of the Best Band ..... 55
5.4 Effect of Multiple Bands ..... 57
6.0 CONSEQUENCES OF THE THEORY ON THE CHARACTERISTICS OF DATA SYSTEM ..... 59
6.1 Impact on the Frequency of Observation ..... 59
6.2 Impact on the Extent of the Area which must be Observed ..... 63
6.2.1 The Effect of Bounding and the Role of Auxiliary Information ..... 65
6.2.2 Sampling ..... 68
6.2.3 Mensuration ..... 78
6.3 Kole of Auxiliary Information ..... 81
7.0 SIMULATION SCHEME AND RESULTS ..... 33
8.0 IMPACT UPON OSTA'S AGRICULTURAL DATA SYSTEM OF THE NEXT DECADE ..... 91
8.1 State of the Data System ..... 91
8.2 System Performance - Accuracy ..... 91
8.2.1 System Performace - Recurrence Frequency ..... 92
8.2.2 System Performance - Role of Auxiliary Informa- tion ..... 94
8.3 System Cost ..... 95
PaGE
APPENDIX A ..... A-1
.APPENDIX B ..... B-1
APPENDIX C ..... C-1
APPENDIX D ..... D-1
APPENDIX E ..... E-I

## LIST OF TABLES

## PAGE

TABLE 2-1: YEARLY WORLDWIDE EXPENDITURES FOR CROP SURVEY/ FORECAST (1977) ..... 7
TAE:E 2-2: U.S. GROSS AGRICULTURAL EXPORTS, 10-YEAR CUMULATIVE VALUE 1964-1974, CURRENT \$ MILLION,FOB ..... 10
TABLE 2-3: GROSS U.S. EXPORTS OF STAPLE CROPS, 10-YEAR COMULATIVE VALUE 1964-1974, CURRENT \$ MILLION,FOB ..... 11
TABLE 2-4: MAJOR WORLD INPUTS \& EXPORTS OF SELECTED AGRICULTURAI COMMODITIES 6-YEAT CUMULATIVE VALUE (1968-73) \$M CURRENT - EXPORTS FOB, IMPORTS CIF ..... 19
table 2-5 CROPS and COUNTRIES INITIAL CANDIdATES FOR SURVEY ..... 21
Table 2-6 CROPS AND COUNTRIES FINAL CANDIDATES FOR SURVEY ..... 26
TABLE 3-1 ACCURACIES CURRENTLY ACHIEVED IN THF MEASUREMENT OF ACREAGE ..... 30
TABLE 3-2 ACCURACY OF CLASSIFICATION OF CROPS ACHIEVED BY ERTS INVESTIGATORS ..... 35
TABLE 3-3 ACCURACY OF CLASSIFICATION OF CROPS ACHIEVED FROM 1974 то 1978 ..... 36
TABLE 4-1 PRINCIPAL SPECTRAL DATA BASES AVAILABLE IN THE LITERATURE ..... 39
TABIE 4-2 CHARACTERISTICS OF THE "PURE" SPECTRAL DATA USED IN THE ANALYSIS ..... 40
TABLE 5-1 NUMBER OF PIXELS (COST FUNCTION) REQUIRED TO BE OBSERVED WITHIN THE FIRST FIVE TM BANDS ..... 56
TABLE 5-2 RANKING OF TM BANDS FOR DISCRIMINABILITY BETWEEN STAPLE CROPS ..... 57
table 6-1 PRINCIPAL AUXILIARY DATA PECULIAR TO REGION OF INTEREST CROP ACREAGE INVENTORY ..... 82
TABLE 7-1 COUNTRIES, REGIONS, CROPS AND NUMBER OF SAMPLES USED FOR STUDY ..... 85
TABLE 7-2 EXAMPLES OF WINDOW FORMAT USED IN STMULATION ..... 87
TABLE 7-3 PERCENT OF SIMULATED SAMPLE SEGMENTS AGQUIRED by a Single orbiting Platform (8) ..... 89
TABLE 8-1 TIME REQUIRED FOR COMPLETE RBV OF ThE EARTH'S SURFACE VERSUS RESOLUTION ..... 95

## LIST OF FLGURES

PAGE
FIGURE 2-1: PANORAMA OF THE WORLD'S PRODUCTION OF S'TAPLE CROPS ..... 8
FIGURE 2-2: FLUCTUATION OF AGRICULTURAL EXPORTS ..... 13
FIGURE 2-3: BATIONALE FOR SELECTING COUNTRIES FOR AGRICULTURAL SURVEY ..... 13
FIGURE 2-4: THE MAJOR CUSTOMERS FOR U.S. AGRIPRODUCTS ..... 16
FIGURE 2-5: the most Fluctuating U.S. CUSTOMERS ..... 18
FIGURE 2-6: DISRETIONARY SURPLUSES OF MAJOR AGRICULTURAL EXPORTERS ..... 20
FIGURE 2-7: CEREAL SUBSTITUTION IN HUMAN CONSUMPTION ..... 23
FIGURE 2-8: RANKING OF WORLD PRODUCERS OF PRINCIPAL CEREAL SUBSTITUTION AND FIBER CROPS ..... 25
FIGURE 3-1: DISTRIBUTION OF CLASSTFICATION ACCURACIES FOR ERTS INVESTIGATIONS ON ACREAGE MENSURATION ..... 33
FIGURE 4-1: FUNCTIONAL DATA FLOW GENERAL RADIOMETRIC OBSERVATION SYSTEM ..... 38
FIGURE 4-2: SPECTRA OF VARIOUS CROPS AT 100\% LEAF COVER IN IMPERIAL VALLEY, CALIFORNIA ..... 42
FIGURE 4-3: TEMPORAL PROGRESSION OF THE MEAN REFLECTANCE FOR THE CROPS CONTAINED IN THE HAND COUNTY DATA SET ..... 44
FIGURE 4-4: SPECTRAL VARIANCES OF CORN ..... 45
FIGURE 4-5: AREAL DEVELOPMENT OF CROPS AS A FUNCTION OF TIME SOUTHWEST CROP REPORTING DISTRICT, KANSAS, 1973 SEASON ..... 46
FIGURE 5-1: AREA WHICH MUST BE OBSERVED AS A FUNCTION OF SCENE PARAMETERS ..... 53
FIGURE 5-2: TEMPORAL BEHAVIOR OF CONTRAST RATIO: HAND COUNTY, N.D. ..... 54
FIGURE 6-1: CONCEPT OF STATISTICAL WINDOW ..... 60
FIGURE 6-2: MONTHLY MEAN AND ONE-SIGMA DISPERSION OF AVERAGE DAILY TRANSMITTANCE DIFFERENTIAL ..... 63

LIST OF FIGURES (cont'd)
PAGE
FIGURE 6-3: PROCEDURE FOR CONSTRUCTING PHENOLOGICAL STATISTICS ..... 64
FIGURE 6-4: STATISTICAL (ONE SIGMA) TEMPORAL WINDOW ENVELOPES OF REFLECTANCE DIFFERENCE USSR, UKRAINE ..... 66
FIGURE 6-5: REQUIRED RECURRENCE OF OBSERVATION TO ACHIEVE 99\% PROBABILITY OF VIEWING FOR SPECIFIED CLOUD COVER AS A FUNCTION OF SENSOR THRESHOLD SENSI- TIVITY, $\Delta \rho$ ..... 66
FIGURE 6-6: DEPENDENCE OF AREA TO BE OBSERVED ON THE PRO- PORTION OF THE CROP TO BE INVENTORIED ..... 67
FIGURE 6-7: NUMBER OF PIXELS AND AREA OF EACH SEGMENT AS A FUNCTION OF PROPORTION ..... 76
FIGURE 6-8: NUMBER OF SAMPLES REQUIRED TO ACHIEVE SPECIFIED ACCURACY AS A FUNCTION OF $p$ ..... 77
FIGURE 6-9: MENSURATION ERROR AS A FUNCTION OF TOTAL AREA SAMPLED ..... 77
FIGURE 6-10: RANDOM SYSTEM ERRORS IN ACREAGE MENSURATION ..... 80
FIGURE 6-11: REDUCTION OF DATA LOAD THEORETICALLY ACHIEV- ABLE BY SAMPLING VERSUS WALL-TO-WALL COVERAGE ..... 80

## FOREWORD

The objective of Contract NAS8-32408 was to assess the characteristics required by the Data Systems of future OSTA Earth-0bservation systems of the next decade.

It specified investigations in the six application areas Agriculture, Water Resources, Land Use, Global Weather, Severe Storms and Marine Weather. Reported here are the results of the analysis of Agricultural Data Systems. The authors wish to express particular thanks to Mr. Harvey Golden and Dr. George McDonough of Marshall Space Flight Center for their enlightened leadership: and to Dr. Charles T. Paludan, Dr. Sanford W. Downs, Jr. and Dr. Robert Jethro of Marshall for their many valuable suggestions.

Significant portions of this work were developed in prior efforts under the leadership of Dr. Louls Walter and Mr. William Stroud of Goddard Space F1ight Center, and Mr. Leonard Jaffe of NASA Headquarters. The author"s thanks extend to them also.

Dr. James C. Harlan provided unstinting cooperation in the difficult task of analysis of the spectral data bank gathered by his organization in Bushland, Texas.

### 1.0 SUMMARY, RESULTS AND CONCLUSIONS

The theme for the Data System task in Agriculture, chosen in concert with the Marshall Space Flight Center, was "Global Crop Production Forecasting." Selection of apecific theme within the broad area of Agriculture was motivated by the desire to lend focus to the task; simultaneously, Marshall's directives were to provide results sufficiently general as to be applicable to other agricultural uses of remotely sensed data.

The anaiysis herein reported applies to a generic agricultural observation system: LANDSAT D was used as a benchmark against which to compare quantitative results.

Two principal scenarios motivate Global Crop Forecasting: "Promotion of the US Balance of Trade" and "Promotion of Global Freedom from Want." The former was chosen as the more realistic motivator of US efforts.

The crops to be surveyed were the major US export staples. They were selected from the cumulative ten-year export history of the US. The raiionale for selecting countries candidate for survey excluded nonproducers of specific target crops: it included overproducers, i.e. competitors to the US for exports, and marginal producers which steadily or periodically import US agriproducts.

The selection methodology yielded the staple crops wheat, soybeans, corn, cotton, tobacco, rice, grain sorghum, and 24 countries growing these commodities. Of these crops, tobacco and cotton were excluded


#### Abstract

from further consideration because they do not constitute alirentary staples.


Substitution of crops was found to be negligible in human food, important in animal fodder. This added to the list of comodities the small grain fodder crops barley, oats and rye.

Crop production is the product of the two essentially independent factors of acreage and yield. Since measurement of the latter from remotely sensed data is as yet in the experimental stage, the study concentrated on the measurement of acreage.

The user requirements were assessed as befng approximately equal to the accuracy performance of current conventional crop acreage inventory systems. The corresponding systems specifications for accuracy range from $98 \%$ for US wheat to $92 \%$, one sigma, for foreign forage crops.

The performance of OSTA data systems in acreage mensuration was assessed from analysis of the performance achieved by ERTS and LANDSAT experimenters. Average inventory accuracy was found to be of order $80 \%$ in the time frame 1972-74; Lmproving to approximately $86 \%$ between 1974 and 1978. These levels of performance were found to fall short of the user requirements by a factor of at least 2 , at most 5.

This finding led to investigate the data system from end-to-end, in order to seek the reasons for the shortcoming, and to determine which data system drivers required improvement.

The analysis began at the data systems front-cnd. i.e. at the interface between the natural phenomena determining crop spectral reflectance and the sensor. To this effect, several of the fine-grained
calibrated spectra from the LACIE supecsites were analyzed in detail. It was concluded that unique crop spectral signatures do not appear to exist; that the values of the reflectances fluctuate significantly, even within the same field; that the information contained in the differential amplitudes of spectral bands is in and by itself insufficient to achieve discrimination accuracies satisfying the user requirements; and that the driver of discrimination is the relative average amplitude, or contrast ratio, between the mean spectral amplitudes, brough about by the marked differences of mean reflectance which accompany the natural stages of phenologic development.

These findings led to the development of a theory of radiometric discrimination employing the mathematical framework of the theory of discrimination between scintillating radar targets. The theory indicates that the functions which drive accuracy of discrimination are the contrast ratio between targets, and the number of samples, or pixels, observed.

The theoretical results led to three primary consequences as regards the data system: 1) agricultural targets must be imaged at correctly chosen times, when the relative evoluation of the crop's development is such as to maximize their contrast; 2) under these favorable conditions, the number of observed pixels can be significantly reduced with respect to wall-to-wall measurements; 3) the remotely sensed radiometric data must be suitably mixed with other auxillary data, derived from external sources.

Analysis of the optimal timing requirements in the presence of naturally occurring cloud cover led to the conclusion that the current
configuration of earth-observing platforms operating in the optical and IR spectral ranges need modification as to orbits and swath widths, and could probably substantially benefit from the addition of active microwave sensors. Analysis of the optimal sampling requirements indicated that the number of pixels imaged and processed drives the data system's operating costs: the use of a sampling scheme in heir of the current wall-to-wall imaging mode could reduce the system's recurring costs by up to a factor of two. Analysis of the role of the auxiliary data indicates that a most important contribution to the system's price-performance would be a world-wide, uniform, photographic-type coverage of relatively good regolution. Such coverage need not be provided in real time: its refresh rate could range upwards of three years. These findings can form the besis for considerable enhancement of the price/ performance of future OSTA agricultural observation systems. In particular, the RBV could become the source for the auxillary photocoverage. Additional savings are possible by on-board processing of the data, consisting of the addition of short-term storage.

An additional systems savings can result from relaxation of the multispectral scanner's sensitivity. This is brought about by the presence of fluctuations, found to exist around the reflectances of agricultural targets. Within the ovexall system's error budget, of which the "scene fluctuation" is the primary driver, sensor NE $\Delta \rho$ 's of order 64 leve1s appear adequate.

The resulting 4:1 reduction of sensor sensitivity can be traded off against lower-cost sensor implementation: or, it can be exploited to increase the sensor's geometric resolution. It can be shown
theoretically that the tradeoff in favor of performance would improve LANDSAT D's resolution to approximately 15 meters.

The theoretical results were simulated on the Marshall Data System Dynamic Simulator (DSDS). The results confirmed the need for modifying the deployment of earth-observing platforms, and the savings accruing from observing a reduced number of sample picels. The simulation neither confirmed nor disproved the theory, because the DSDS had not reached its full Stage III configuration, thus could not, at the time, accept inputs from live scenes. The theory was however tested independently by performing regional crop inventories in selected regions of the world, with good agreement between results and prediations.

### 2.0 SCENARIO

### 2.1 Significance of Global Crop Survey and Forecast

The activities of estimating and forecasting agricultural production are of major importance virtually everywhere in the world.

Inaccurate forecasts cause agricultural producers to make erroneous production decisions: they distort optimal inventory carryovers. The net result is lowered social efficiency through wasted efforts. Improved forecast accuracy reduces this waste motion, hence produces a net increase in social welfare.

Precise forecasts obtained sufficiently early permit the formulation of national plans and policies best suited to cope with surplus or scarcity. Good predictions allow agricultural producers to take remedial actions aimed at increasing output, reducing costs, or taking shelter against declining prices caused by overproduction. The earlier this information is available, the greater the possible spectrum of ameliorative actions and the larger the potential benefits.

The worth of agricultural survey and forecast activities is evidenced by the efforts and resources which are being devoted to it worldwide. Table 2-1 presents a conservative estimate of the expenditures by world governments for agricultural data gathering. Additional moneys are expended yearly by commodity dealeis, traders, Chambers of Comerce, international organizations, other private and pubiic enterprises [1].

## JABLE 2-1

YEARLY MORLDUIOE EXPEMDITURES FOR CROP SURYEY/FORECNST (1977)

| REGIOAT | SURVEY/FORECAST COST M1LIIOH U.S. S, 1977 |
| :---: | :---: |
| U.S. (OOMESTIC A FOREIGN) | 40 |
| CAMADA | 2.4 |
| WESTERN EUROPE | 48.2 |
| EASTERN EUROPE | 8.9 |
| LATIN AMERICA | 2.5 |
| AFRICAMID-EAST | 2.1 |
| ASIA EXCL. USSR, PRC | 4.5 |
| OCEANIA | 1.5 |
| MORLD | 110.1 |

The world's important crops number in the hundreds. Most important in terms of market value, quantity and caloric content are the staple crops.

Figure 2-1 shows that grain crops are the most significant: they provide over half of mankind's food. [2]. [3].

### 2.2 World Scenarios

The configuration and characteristics of a Data System for global agricultural forecast are a function of the surface area, geographic location, number of crops to be surveyed.

Two principal scenarios determine the selection of the countries and crops candidate for survey:

Figure 2-1



WCY's


1. As seen from the U.S. national outlook
2. As seen from the outlook of the international comunity, i.e. the United Nations.

The U.S. national goals have essentially remained unchanged throughout U.S. history, They are:

- Maximize the citizen's well-being
- Foster the U.S. balance of trade
- Optimize U.S. forelgn policy

The United Nations goal is essentially the humanitarian objective:

- Foster world peace
- Promote global freedom from want


### 2.3 The U.S. Scenario

In the agricultural arena, the three U.S. goals are interrelated.

Promotion of the balance of trade fmplias essentially "sell more, at more advantageous prices."

Citizen's well-being, or consumer satisfaction, means: "but without unduly increasing domestic prices for U.S.-produced commodities, and maintaining favorable prices for imported agricommodities."

The opportunity for a significant foreign policy role arises if the U.S. can trade food in exchange for political or socieconomic considerations.

This study focused on the first goal, 1.e. maintenance and promotion of a favorable balance of trade.

### 2.4 Derivation of the Crops to be Surveyed

Agricultural products have always played a major role in the U.S. export picture. In the mid-nineteenth century they represented approximately $\mathbf{8 0 \%}$ of total U.S. exports. Although the agricultural share of total U.S. exports has since declined to 25\%, the gross dollar value of agricultural exports has increased from $\$ 150$ million in the 1870 's to over \$25 billion, in current dollars.
U.S. agricultural exports fluctuate yearly, in response to domestic and foreign alternations of production shortfalls and surpluses. To smooth out these fiucutations, the export values should be integrated over a sufficiently long period of time. Table 2-2 ranks the U.S. agriexports based upon their l0-year cumulative value [3].


Table 2-3 synthesizes the information of Table 2-2, It excludes the animal products, for the following reasons:

- The consistency of the animal Inventory is not directly amenable to survey from Satellite Remote Sensing.
- The diet of animals is composed of grains, pasture and forage in varying proportions in differing countries. The feed grains are already included in the listing of Table 2-3.

| TABLE 2-3 |  |  |
| :---: | :---: | :---: |
| grass u.S. Exports of Staple Crops, 10-YEAR CCMULATIVE value |  |  |
| 1964-1974, CURRENT 5 MILLION, FOS |  |  |
|  | value | PERCEHT |
| SOY AND SOY PRODUCTS | 19,049 | ${ }^{21}$ |
| WHEAT | 18,527 | 20 |
| CORN AND COR PROOUCTS | 14,870 | 16 |
| cortan | 6,525 | 7 |
| tobacco | 6,186 | 7 |
| RICE | 3,684 | 4 |
| SORGMM | -3,004 | 3 |
| subtotal | 71,845 | 79 |
| OTHER LESS AMIMAL pRODUCTS | $\stackrel{\text { 19,292 }}{ }$ | 21 |
| total less mithal PRCOUCTS | 91,137 | 100 |
| Percents may not add due to rounding errors. |  |  |

Rangeland (pasture) and forage (hay) are also important candidates for survey for two reasons: 1) they are complementary or substitute animal foods, and can thus affect the demand for the primary grains; and 2) they act as "confuser" crops in the remote observation of the primary staples.

Table 2-3 Indicates that soybeans, wheat and corn head the list of exports by value. They constitute $58 \%$ of U.S. staple agriproducts exported during the decade, exclugive of animal products. The other major categories combined - cotton, tobacco, rice, sorghum - represent 21\%, The aggregate of the several minor comodities is $21 \%$. No single commodity below the ranking of sorghum produced exports greater than $1 \%$ of the total.

Before concluding that the seven crops indicated in Table 2-3 are indeed those of major interest to U.S. agricultural exports, it is well to analyze whether the 10 -year cumulation doee not smooth out and hide major fluctuations. Figure 2-2 indicates that this is not the case: the relative pexcentages of the exports of the staple crops vis-a-vis the total agricultural exports have remained relatively constant over the last decade. Within the validity of historical extrapolations, and barring major exogenous disturbances, they can thus be assumed to remain substantially the major U.S. agriexports of the near future.

### 2.5 Derivation of the Countries to be Surveyed

### 2.5.1 Logic

The "universe" for export of U.S. agricultural commodities subdivides as follows:

1. Countries which do not consume the product at all: i.e., noncustomers.
2. Countries which are consistently self-sufficient (for a given agriproduct which the U.S. produces in surplus): neither customers nor competitors. The sub-category of Countries

## FLUCTUATION OF AGRICULTURAL EXPORTS

MAJOR AGRICULTURAL EXPORT COMMODITIES AS A FRACTION of total gross agricultural exports, dollar values


Figure 2-2

## RATIONALE FOR SELECTING COUNTRIES FOR AGRICULTURAL SURVEY



Figure 2-3
which do not purchase from the U.S. for policy reasons, valid in the $1960^{\prime} s$, has, since the massive entry-to-market of USSR, PRC and Eastern Europe, dwindled into insignificance, at least for the time being.
3. Countries which produce the product, but not in sufficient; amounts to meet their demand, and which are steady importers.
4. Countries wherein the difference between production and internal demand alternates between surplus and deficit. These are potential U.S. customers in shortfall years, potential competitors in surplus years.
5. Countries which are consistent exporters. These are potential competitors of the U.S.
6. The U.S. itself, to assess its year-to-year capability to export.

The requirements for agricultural surveys by the U.S. vary among these categories of countries.

Countries which exhibit characteristics 1 and 2 - i.e. consistent non-customers and non-competitors for any given product - are not important to agricultural U.S. exports of that product. Surveys of their agricultural production of that product are thus of little interest to the U.S. foreign trade posture.

Surveys of countries in category 3 , i.e., which exhibit the qualities of marginal producers and steady and consistent importers are of interest to assess the quantity of product they are likely to import in any one year. This assessment serves as the basis for U.S. agriexport planning on how to
convert this "addressable market" into sales for the U.S. The interest is proportional to each country's volume of the addressable market and to the potential competition from other surplus-producing Countries.

Countries of category 4, fluctuating customer-competitors, are of interest in proportion to the magnitude of the fluctuations of their agricultural production.

Surveys of countries of Category 5, the potential competitors, are of interest in proportion to the magnitude of their surplus.

Figure 2-3 depicts the logical choices.

### 2.5.2 Procedure for derivation of the countries to be surveyed

The procedure is to isolate, down to a meaningful level of significance, the countries which fall in categories 3, 4, and 5, for the principal crops of interest to U.S. agriexports.

Figure 2-4 depicts the principal customers for the major U.S. export crops over the last decade. They are ranked from bottom to top by percentage of the dollar volume of imports from the U.S.; from left to right by total dollar value of each imported commodity. The blank unlabeled areas at the top of the histogram bars comprise a rather large number of customers, each of which is significant at most to the $1 \%$ level; i.e., its imports during the decade did not exceed more than $1 \%$ of the total U.S. exports of the corrsponding commodity.

Note that Figure 2-4 indicates percentages and not absolute dollar values. The dollar purchases of each customer can be obtained by

Figure 2-4
THE MAJOR CUSTUMERS FOR U.S. AGRIPRODUCTS
IN PERCENT OF THE CURRENT DOLLAR VALUE OF EACH COMMODITY ACQUIRED CUMULATIVE FOR THE DECADE 1964-74.
 CUSTUMERS,FROM BOTTOM TO TOP.
multiplying the percentages of product acquired, from Figure 2-4, by the total dollar value of the product exports, from Table 2-3. For example, Japan's purchases of wheat were $10 \%$ of the total U.S. exports; those of sorghum, 45\%. The total U.S. exports were $\$ 18.5$ Billion for wheat, $\$ 3$ Billion for sorghum. Thus Japan's $10 \%$ share of U.S. wheat exports brought a revenue of $\$ 1.85$ Billion: its purchases of sorghum, In spite of the much higher share, resulted in a lesser revenue, e.g. $\$ 1.35$ Billion,

The information of Figure $\mathbf{2 - 4}$ allows elimination of the countries which fall in categories 1 , non-consumers, and 2, self-sufficient. It aggregates categories 3, net importers, and 4, fluctuating importersexporters.

The net importers fall into two sub-categories: steady importers, typified by Japan, whose purchases essentially repeat year after year; and fiuctuating importers. This second sub-category is clearly of greater interest to U.S. survey efforts. Figure 2-5 exemplifies its behavior.

Table $2-4$ sexves to assess which importing countries fall into category 4, fluctuating customer-competitors. It indicates that the USSR is the only such for the commodity wheat, since during the decade It did export as well as import. The PRC likewise is a fluctuating customer-competitor for the comodity soybeans, France for corn.

FICURE 2-5
THE MOST FLUCTUATING U.S. CUSTOMERS


WHEAT


THE STEADIEST U.S. CUSTOMERS


YEARS BEGIN OCT. 1



## TABLE 2-4

MANOR HORLD LMPORTS E EXPORTS DF SELECTED AGRICULTURAL COMNODTIES
6-YEAR CLMLLATIVE VALUE (196B-73)
SM. CURREHT - EXPORTS FOB. IMPORTS CIF

| WHEAT |  |  | COPN |  |  | SOYBEAtis |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EXPORTS | TMPORTS |  | EXPORTS | 14PORTS |  | EXPORTS | IMPORT: |
| WORLO | 26,830 | 28,150 | 40RL0 | 13.600 | 14,930 | MORLD | 9,620 | 9.720 |
| U.S. | 9,740 | - | U.S. | 7.170 | - | U, S. | 8,440 | - |
| CMMADA | 5,050 | - | FRAHCE | 1.640 | 150 | 日RAZIt | 706 | * |
| FMAMCE | 3,150 | * | ARGENTIMA | 1,520 | - | PRC | 350 | 500 |
| USSR | 2,730 | 2,040 | SOUTH AFRICA | 660 | * | Japan | - | 2,590 |
| AUSTRALIA | 2,150 | - | JAPAM | - | 2.540 | FRG | - | 1.620 |
| AREEMTIMA | 840 | - | ITALY | - | 1.990 | HETHERLARDS | * | 930 |
| PRC | - | 2,430 | UK | * | 1,380 | SPAIM | - | 910 |
| JAPAM | - | .70 | FAGS | - | 1,370 | ITALY | * | 660 |
| UK | - | 2.060 | NETHERLANOS | - | 1.330 |  |  |  |
| IMCONESIA | - | 1,500 | SPALN | - | 970 |  |  |  |
| FRG | * | 1,400 | U5SR | - | 630 |  |  |  |
| GRAzIL | - | 1.040 |  |  |  |  |  |  |
| ITALY | - | 840 |  |  |  |  |  |  |
| EGYPT | - | 740 |  |  |  |  |  |  |
| CZECHOSLOVAKLA | - | 610 |  |  |  |  |  |  |
| PAKISTAN | - | 310 |  |  |  |  |  |  |

Table $2-4$ also identifies the countries falling within category 5, the steady competitors. These are countries which do not import because they possess a consistent, repeating discretionary eurplus: i.e. their production consistently exceeds internal demand.

Figure $2-6$ presents a panorama of the principal competitors. It Indicates that the U.S. not only possesses the largest but also the most consistent and reliable surplus.

### 2.5.3 Recapitulation of Crops and Countries Candidates for Survey

Table $2-5$ recapitulates the principal crops and countries candidates for survey of the major staples for human consumption, down to the $2 \%$ level (as percentage of total U.S. agriexports) for the crops,

Figure 2-6
discretionary surpluses of major agricultural exporters

and to the $2 \%$ level (fraction of imports of a given commodity from the U.S.) for the Countries. Tobacco is not included since it is not a major staple for human consumption: it is, rather, a luxury item.

| TABLE $2 \times 5$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| CRGPS AND COUHTRIES IMITIAL CAMDIOATES FOR SURVEY |  |  |  |  |
| HHEAT | CORN | SOYBEAMS | RICE | Cotion |
| U.S.S.R. | U.S.S.R. | - | - | U.S.S.R. |
| U,S. | U,S. | v.5. | U.S. | U.S. |
| PRC | PRC | PRC | PRC | PRC |
| india | IMOIA | INOIA | India | india |
| france | FRANCE | - | - | - |
| CAMADA | - | - | - | $\cdots$ |
| australa | - | - | - | - |
| turkey | * | - | - | TURKEY |
| itar | ITALY | - | Italy | - |
| polamo | - | - | - | - |
| - | brazil | brazil | 日arazil | Brazil |
| - | 5. Africa | - | dRAzIL | S. Africa |
| rowahia | rotania | - | * | - |
| - | - | - | IMDOAESIA | - |
| - | - | - | - | - |
| FRG | - | - | - | - |
| vugoslavia | yugoslavia | - | - | " |
| argertina | argentima | - | - | ARGEHTIHA |
| morocico | - | - | - | - |
| - | hungary | - | - | - |
| - | Egypt | - | - | EGYPT |
| - | - | - | BAMGLADESH, JAPAN, THAILAAD | - |
| - | - | - | - | pakistan |
| - | - | - | - | HEXICO |

Before concluding that this is indeed the final set of crops and countries, it is important to investigate whether other crops produced by foreign customers are used as substitutes for the primary U.S. exports: for, in this case, and to the extent of the possible substitution, foreign crops other than those indicated in Table $2-5$ may become candidates for survey .

### 2.5.4 The Effect of Substitution in Human Nutrition

Past studies and field surveys by U.S. Agencies and Foundations, by the UN and the FAO, have uniformly concluded that substitution, even of very similar foods, is not a viable alternative for human consumption even in periods of famine. At least, not in the short-term: habits and tastes change but slowly [4].

This is confirmed by Figure 2-7, drawn from FAO statistics, which depicts the historical evolution of human consumption of cereals in selected countries in the three primary categories of wheat, eaters, maize eaters, and rice eaters. Because the per-capita income has grown steadily and significantly over the years shown, the curves fllustrate the well-known relationship that the consumption of staples grows initially with increasing per capita income: beyond a threshold level, further increases in income result in a decreasing pro-capita consumption of staples in favor of protein and "luxury" foods. More significant to the question of substitution, Figure 2-7 indicates that the ratios of the diverse staples consumed by a given country change but slowly. Also, short term reductions in pro-capita intake of one staple are not compensated by corresponding increases in other staples. This indicates that substitution is not an important driver in human nutrition, except over relatively long time spans.

FIGURE 2-7

CEREAL SUBSTITUTION IN HUMAN CONSUMPTION


### 2.5.5 The Effect of Substitution in Animal Feed

Over the last fifteen years, the increased demand for protein has caused a significant shift in the composition of animal feed. Appendix A, Figure A-4 illustrates the trend for the USSR and the U.S.: whereas human grain consumption has remained substantially constant, that of feed has significantly increased.

Currently, of the world's cereal harvest only approximately $37 \%$ is dedicated to human consumption, the balance $50 \%$ after deducting allocations for seed, waste, industrial usage, is devoted to animal consumption.

Contrary to what happens in human consumption, cereals of all types can be substituted in animal feed. As such, their survey is important within the customer and customer-competitor countries already selected in Table 2-5, and in other countries which are major producers of these commodities. The ranking of the major producers of feed grains is presented in Figure 2-8. Cotton is also included.

The complete tabulation of crops and countries which are the final candidates for survey is presented in Table 2-6.

It is well to reiterate that these crops and countries are only those that have passed the criteria established previously. Japan, for example, although a major and steady customer for several US agricultural staples, is not a significant producer of these: as such, it is excluded from the list of candidates for survey, simply because there would not be much to survey.

FIGURE 2-8
RANKING OF WORLD PRODUCERS OF PRINCIPAL GEREAL SUBSTITUTION AND FIBER CROPS




| WHEAT |  |  |  | TABLE 2-6 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CROPS AND COUNTRIES FLHAI CAMDIDATES FOR SURYEY |  |  |  |  |  |  |  |
|  | CORN | SOYEEANS | RICE | BARLEY | OATS | RYE | Cotron |  |
| U.S.S.R. | U.S.S.R. | - | - | U.S.S.R. | U.S.S.R. | U.S.S.R. | U.S.5.n. | - |
| U.S.S.R. | U.S. | U.S. | U.S. | U.5. | U.S. | U.S. | U.S. | , |
| PRC | PRC. | PRE | PRC | PRC | PRE | - | PRC | - |
| PRC | Pra |  |  | INDIA | - | - | IMDIA | 12014 |
| inda | IMDIA | - | India | France | FRAMCE | * | - | - |
| FRAMCE | france | - | - | FRANCE | France | * |  |  |
| CAMADA | - | * | - | CANADA | casada | - |  |  |
| MUSTRALIA | - | - | - | australia | Australia | - | - | - |
| TURKEY | - | - | - | TURKEY | - | TURKEY | TURKEY | - |
| ITALY | ITALY | - | ITALY | - | - | - |  |  |
| POLAND | - | - | - | POLAND | POLAND | POLAES | - | - |
| - | brazil | BRAZIL | BRAZIL | - | - | - | BRAZIL | - |
| - | S. Africa | - | - | - | - | - | S. AFRICA | * |
| romaria | romania | - | - | - |  |  |  |  |
| - | * | - | INEONESIA | - | - |  |  |  |
| - | - | - | * | - | - | - |  |  |
| - | - | - | - | UK | - | - | - | - |
| FRG | - | - | - | FRG | FRG | FRG | - | * |
| yugoslayia | yugoslavia | - | - | $\stackrel{-}{\square}$ |  | ${ }^{*}$ | abceitich |  |
| Argemtina | argentina | - | - | argentinh | AREENTIMA | argentina | argemtim | - |
| Marocco | - | - | - | MOROCCO | * | - | - |  |
| - | HuMGARY | - | - | - | - | - |  |  |
| - | EGYPT | - | - | - | - | - | EGTPT | * |
| * | - | - | BARELADESH. JAPAM, THAILAFID | - | - | - | - |  |
| - | - | - | - | dencark | - | - | - |  |
|  | - | - | - | CzECHOSLOUAKIA | Czechoslovakih | - | - | - |
|  |  | - | - | GOR | GOR | GDR | - | - |
|  |  | - | - | - | SWEDEM | * | - | - |
| - |  | - | - | - | Austria | - | - | - |
| - |  |  |  | - | - | - | PAKISTAN | - |
| - |  |  |  |  | - | - | MEXICD | - |

### 2.6 Effect of Global Crop Forecast on Other U.S. Goals

### 2.6.1 Effect of the requirement to maximize consumer satisfaction

In a free-market economy, early prediction of the status of crops will result in the maximum possible reduction of U.S. consumer prices for the primary commodities. The UwS. spends approximate one-half of its revenues from the exports of agriproducts in importing complementary and suppementary agricultural comodities and derived products. Complementary imports are items which are not produced in the U.S.: e.g. coffee, bananas, tea. Supplementary imports consist of products available domestically, but which consumers cherish for reasons of taste or custom: e.g. wines, canned tomatoes, pasta products.

The complementary and supplementary agricultural products play a significant role in insuring the satisfaction of U.S. consumers. Thus inventories of the respective producing countries - for example, Brazilian coffee - are important, and a scenario analogous to, but in reverse of that presented above for the exports, could be constructed. This was, however, beyond the scope of this study.

### 2.6.2 Role of Global Crop Forecast as Tool of Foreign Policy

The optimum trading of U.S. -produced food in exchange for political advantages requires the early knowledge of the requirements of the numerous countries who are actual or potential AID recipients. This implies that the survey of principal crops should be extended to at least the most important of these countries. The rationale for selecting target crops and countries differs from that developed above: it addresses the selection objectives of U.S. Foreign Policy. Crops different from those thus far identified do emerge -- e.g. cassava.

This investigation was beyond the scope of this study.

### 2.7 The International Scenario

The contribution achievable to the UN goal of "world peace" by providing adequate nutrition to the world's masses is a matter of philosophical speculation. History provides abundant examples of wars and of local disturbances induced by want; as well as examples of prolonged mass deprivations not leading to such violent epilogues; and also instances of major wars initiated by well-fed contenders.

The second UN goal, "promoting global freedom from famine" is more specific and amenable to quantitative analysis, without the need to pass judgements on its philosophical correctness. It is presented in Appendix A.

The UN/FAO scenario was not utilized for this study. It is however worth noting, as shown in Appendix A, that this scenario maintains the crops and countries of the U.S. Balance of Trade scenario, except for the inclusion of additional countries producers and consumers of the staple crop rice.

### 3.0 SYSTEM PERPORMANCE REQUIREMENTS AND CURRENT PERFORMANCE

### 3.1 Derivation of the Data System's Performance Requirements

Appendix B presents an overview of the agricultural survey nethods currently in use throughout the world. As indicated therein, crop production forecasts comprise two distinct functions:

- Measurement of the current status of the crop. For reasons of cost, this measurement is always performed by statistical sampling. Following the USDA designation, it is also called "estimate."
- Extrapolation to the future harvest, more properly termed "forecast." This function is accomplished based on historical regressions augmented by "best estimates" of the future incidence of adverse or beneficial phenomena affecting the crop, such as weather.

The estimate of the current status is composed of two subfunctions:

- Estimate of the acreage under cultivation
- Estimate of the crop's condition.

This study focuses upon the acreage estimates, because they are currently amenable to measurement from orbital data systems.

Table 3-1 presents the accuracies of acreage mensuration achieved by various countries and by U.S. States and Counties [5],[6],[7]. It is subject to the following interpretation:

- The reported accuracies were obtained from direct discussions with responsible individuals in the US and abroad, augmented by analysis of their data.
- The report:ed accuracies are valid late in the season; i.e. not earlier than at least one month prior to harvest.
- The stated accuracies refer to sampling errors only, i.e, the combination of the random errors induced by the limited number of samples and by the accuracies of measuring each sample's crop acreage. Systematic errors are not included.

| TABLE 3-1 |  |  |
| :---: | :---: | :---: |
| ACCURACIES CUREENTLY ACHIEVED IH THE MESSUREMENT OF ACREAGE |  |  |
| CSINMTRY | CROP | $\begin{gathered} \text { ACAEAGE MEASUREMEET } \\ \text { ERROR PREHARVET } \\ \text { ONE SIGMA } \\ \hline \end{gathered}$ |
| u.s. | HHEAT | $\pm 2 \%$ |
|  | CORK | 26* |
|  | sor | *6* |
| italy | nheat | 14: |
|  | FOPAGE | * $8:$ |
|  | CORA | 77\% |
| WESTERN LUROPE | simlar to italy |  |
| CNMADA | Sprimg mieat | *3\% |
| USDA-FAS MORLD Estimate | WHEAT | 2 235 |
| U.5. STATES (withaut auxiliary list sampifing | mhor state crop | 477x-159 |
| u.s. connties (without auxisampling sampling | manor countr crop | UP T0 $\pm 20-25 x$ |

Perusal of Table 3-1 leads naturally to the question as to winether the accuracy figures therein presented do indeed represent the user requirements. In numerous discussion by ECOsystems personnel with domestic and foreign user agencies, the following transpired:

- Currently achleved accuracies obtained at the current statutory reporting dates cannot be reduced.
- They must be achieved at costs not in excess of current costs: in fact, it is desirable that the costs be lower.
- Accuracies lower than those currently achieved are only useful if they can provide valuable adjuncts to the current conventional systems, either in terms of significantly lowering costs or of providing significantly improved performance of the total system.
- Users are willing to pay a modest premium for significantly improved accuracies achieved at the statutory rieporting dates.
- Users are disposed to compromise accuracy for timeliness, i.e. less accurate results ob tained earlier than currently achieved are accaptable.
- The combination of accuracy and timeliness warrants a significantly higher premium than what users are willing to pay to accuracy alone.

The current "user market" situation strongly counsels that the accuracy levels depicted in Table 3-1 be assumed as goals for the data system's performance.

### 3.2 Assessment of the Performance of Orbital Data Systems in Estimating Acreage

The purpose of this investigation was to quantify numerically the performance of existing orbital Data Systems, for comparison against the user requirements depicted in Table 3-1. The investigation was performed in two steps:

- First, analysis of all available reports on crisp acreage mensuration by ERTS investigators: these represent tests performed during a concencrated activity in the early phases of the LANDSAT program, from its launch in July of 1972 until 1974.
- Second, analysis of findings from later tests, to assess the trend of improvement.

To this effect, results were gathered from available, published ERTS Investigation reports containing numerical performance figures. Details of the analysis are presented in Appendix C.

The resulting statistical population consisted of 224 distinct tests, performed in 10 locations, embracing 7 crops.

The cumulative curve of results is presented in Figure 3-1A. It graphs the accuracies achieved versus the percentage of the tests achieving them. It presents the results for both the inventory and the mapping, or land use, mode. Inventory mode means the determination of the proportion of a given crop within the area under examination, without however specifying the crop's geographic location. It is the mode universally used for estimating agricultural acreage. Mapping mode, as the word indicates, connotes the identification not only of the species sought, but also of

FIGURE 3-1
distribution of classification accuracies for erts investigations on acreage mensuration
A. CLASSIFICATION ACCURACY OF ERTS INVESTIGATIONS


NUMBER OF DATA POINTS: 224

ACCURACY OF CLASSIFICATION \%
B. CLASSIFICATION ACCURACY OF ERTS INVESTIGATIONS WITH PROPORTIOH


NUMBER OF DATA POINTS: 64
their geometric boundaries and geographic locations. This mode is generally not employed in conventional agricultura. acreage estimation, due to its higher cost with respect to the inventory mode. It is presented in this report because of its implications to the theory of discrimination discussed in Chapter 5.

It can be noted from Figure 3-1 that the accuracies achieved by ERTS investigators in the mapping mode are lower than those competing to the inventory mode: this is quantitatively consistent with the fact that the mapping mode requires more information than proportion estimation: conversely, for equal information content, its level of performance should be lower.

Since, as will be shown in Chapter 5, the accuracy of multispectral classification worsens when the proportion of target crops to the total scene is small, a subset was extracted from the total statistical population, based on the criterion of $10 \%$ or larger pr portion of target crops.

This yielded 64 distinct data points: the test results are presented in Figure 3-1B. Note the higher accuracies achieved.

The probability density functions corresponding to the curves of Figure 3-1 are shown in Appendix C. Computation of the accuracies as a function of confidence limits from these yields the classification resuits depicted in Table 3-2. It shows that the one sigma accuracy of classification in the invertory mode for the total population of 224 data points is 74\%: this increases to $86 \%$ for the subset of 64 data points featuring 10\% or greater proportions.

## TABLE 3-2

## ACCURACY OF CLASSIFICATION OF CROPS ACHIEYED

BY ERTS IMVESIIGATORS

Universe of 224 classification tests on 7 crops, 10 geographic locations. one sigmt confidence

PROPORTIO
ESTIMATIOM
MAPP1值
ACCURACY: 74
ERROR : 26

64 classification tests extracted from the above universe, wherein the crop-to-total-area proportion was greater than 102.

| ACCURACY Y | 86 | 76 |
| :--- | :--- | :--- |

Comparison with Table 3-2 shows that the average performance of ERTS investigator tests in accomplishing inventory fell short of the accuracies currently achieved by conventional methods, with the possible exception of inventories performed at county levels.

ERTS investigations ceased after 1974. To assess whether the early performance has improved in the approximately four years elapsed since, a number of subsequent investigations, performed by reputable organizations, were analyzed. The details are presented in Appendix $C$ : the overall results are shown in Table 3-3. It can be seen that there has been improvement since 1974: yet performance is still short of the user's requirements.

| TABLE 3-3 |  |  |
| :---: | :---: | :---: |
| ACCuagCr of Classification of crops achieved frou 1974 TO 197 |  |  |
| Universe of 18 classification endeavors on 10 crops, 13 geographic locitions; one sigma confidence. |  |  |
|  | proporition Estimation | MAPPING |
| accuracy $:$ | ${ }_{6}$ | 73 |
| ERROR : | 14 | 27 |

The logical next inquiry is to ascertain whether the $75-85 \%$ inventory accuracy thus far achieved by LANDSAT experimenters is a limit imposed by nature, or whether there exist driving elements in the Data System whose exploitation can further enhance crop discrimination and identification.

### 4.0 INVESTIGATION INTO THE PHYSICAL REASONS FOR THE DISCREPANCY BETWEEN REQUIREMENTS AND PERFORMANCE

### 4.1 Methodology

The generalized end-tomend data system of radiometric earth-observation platforms employed currently and expected to be used in the 1980-1990 decade is depicted in Figure 4-1. The methodical Investigation of its performance was begun at the frort-end, by analyzing the relationships between the information provided by nature, $1 . e$. the crop spectra, and the measurement capabilities of radiometric sensing.

The initiai question addressed was whether reflectance spectra of crops do provide sufficient information for accurate identification or discrimination, and, if so, under what operating conditions. By discrimination is meant the recognition that the observed classes are distinct: identification, in addition, is the attribution of a specific label, e.g. agricultural crop, to each distinct class. The difference between discrimination and identification is conceptually akin to that between inventory and mapping.

Proper performance of this investigation suggests the removal, insofar as possible, of all effects which perturb the spectral reflectance patterns: primarily atmospheric absorption, path radiance, instrumental drifts, effects of varying orientations of illumination and look angles. This requires the availability of "pure" spectra, i.e. of fine-grained crop spectral measurements taken under carefully calibrated conditions.

FIGURE 4-1
FUNCTIONAL DATA FLOW GENERAL RADIOMETRIC OBSERVATION SYSTEM


Several spectral data bases were available in the literature prior to 1975. Table 4-1 1ists the principal ones.

| TABLE 4-1 |  |  |  |
| :---: | :---: | :---: | :---: |
| Principh Spectral data bases ayallagle in the literatire |  |  |  |
| desighation | SPOMSOR AGENCY | publication Date | LOCATIOM |
| MtF | nasa/mi | 12/73-5/74 | MTF - bay St. Louis, Ms |
| lars | MASA | 7/68 | Lass - mest lafayette, in |
| ERIM | U.S. AIR force | 1972 | ntis - spaingield, va |
| Erol | U,S. ARMY | 1961-1962 | ntis - springitild, va |
| weslaco | Us:PA/ARS | 10/66-9/67 | USDA ARS - NESLACO, TX |
| KRLINOY | U5SR | 1936-1938 | NRC - OTTAMA, CANADA |
| Himi* | MASA/USAF | various | ntis - sprimgitild, va |
| *Sumary of date from other sources. |  |  |  |

Unfortunately, most of these spectra do not correspond to ideal conditions, because: 1) they are either spectra of plant leaves taken in the laboratory, thus not of the plants as a whole; 2) calibrations surrounding the taking of whole-plant spectra were not consistent. Nevertheless; these spectral data bases were useful as secondary, qualitative sources of information.

The first set of "pure" spectra became available from Bushland, Texas in 1975. They were supplied to ECOsystems through the courtesy of Dr . James C. Harlan of the Spectral Characteristics Laboratory, Remote Sensing Center, Texas A\&M University, Dr. Harlan was also most generous with minutious information as to the experimental procedure followed, ground truth
maps, files and aerial imagery. This allowed certification of the quality of these spectra and perwitted the compensation of spurious effects which had crept into the data gathering procedure in apite of the experimenter's diligence.

Subsequently, other data sets, also collected under calibrated conditions at low altitude, became avallable. The set of data used in this study is indicated in Table 4-2.


These data sets represent a major improvement with respect to the earlier spectra available in the literature. Nevertheless, they still present significant uncertainties. For example: none of the data sets embraces a temporal span sufficiently wide so as to contain all the phenologic stages of corn or sorghum. The data-gatherer's primary
interest appears to have been the measure of wheat. In several cases, obvious sensor and/or processing errors have crept in. Frequentiy, the percent of crop ground cover is not unambiguously stated: thus several crop spectra are mixed with soil spectra in such fashion that it is difficult to unravel the true reflectance of either. In many cases, the nomenclature does not correspond with the actual ground cover: fields planted to a certain crop which never does emerge are labeled as containing that crop. No attempt is apparent to reconcile widely disparate reflectances pertaining to the same field, as for example the reflectances of soil, labeled "bare," before emergence and after harvest.

This state of affairs, particularly evident in the Hand County spectra, requires considerable judgement, and inter-comparison of spectra from all the data sets, in order to avild the conclusion that crop reflectance spectra are essentially random.

### 4.2 Results from the Analysis of the Fleld Spectra

The details of the analysis of the available data sets are presented in Appendix D. The salient conclusions are:

1. The shapes of the crop reflectance spectra are significantly similar at similar growth stages - i.e. after the crops are sufficiently developed to cover the underlying soil. As exemplified in Figure 4-2, there is little evidence of sharply unique spectral structures among the various crops.
2. The spectral shapes remain significantly similar throughout the crop's growth stages, provided that the crop's ground cover is sufficiently dense so as to minimize interference from soil reflection.

FIGURE 4-2
SPECTRA OF VARIOUS CROPS AT 100\% LEAF CONER II IMPERIAL VAIIEY, CALIFORNIA





SOURCE: Atlas of Selected Crop Spectra Imperial Valley, California
S.G. Ungar, NASA Institute for Space Studies, 1977
3. The spectra exhibit significant differences of mean amplitudes as a function of stage of growth. Typicaly progressions are exemplified in Figure 4-3.
4. The mean values of the spectral amplitudes exhibit fluctuations. This is exemplified in Figure 4-4. Fluctuations are present within single fields and in ensembles of fields, and occur in all regions of the spectrum.
5. The fluctuations among ensembles of fields are generally larger than those pertaining to single fields. A possible explanation of the intrafield fluctuations is the presence of discontinuities -- patches, bare spots, stressed areas -- within the fields; and the clutter effect originating from the varying orientations and sizes of the reflecting components of the canopy. A logically appealing explanation of the interfield fluctuations is that cropped fields do not reach the same development stage simultaneously. Figure $4-5$ depicts for various crops the fraction, as a function of time, of the cropped surface which reaches a given stage of phenologic development. It can be seen that as many as 60 days are required to progress from $0 \%$ to $100 \%$ of the covered area. Thus an ensemble of fields generally contains individual fields at different phenologic development, and hence different reflectances. The presence of stress causes similar effects. The available data, cf. Appendix D, suggest 0.1 as a typical lower value and 0.3 as a typical upper bound of the coefficients of variation for an ensemble of fields.
6. Identification was not found possible from spectral signature or from differences in amplitude alone. It requires additional external information, e.g. knowledge of the phenologic progressions prevalling within the region being observed.

## FIGURE 4-3

TEMPORAL PROGRESSION OF THE MEAN REFLECTANCE FOR THE CROPS CONTAINED IN THE HAND COINTY DATA SET

REFLEGTANCES ARE ADJUSTED TO 100\% GROUND COVER

$\square$

FIGURE 4-4
SPECTRAL VARIANCES OF CORN
HAND COUNTY, N.D., 27 JULY 1977



SPECTRAL SAND, MICRONS

## FIGURE 4-5

areal development of crops as a function of time southhest crop REPORTING DISTRICT, KANSAS, 1973 SEASON
may | june $\mid$ july |august $\mid$ sept. $\mid$ oct. $\mid$ nov.




PERCENT OF CROPPED AREA REACHING INDICATED STAGE


SORGHUM - 3,900,000 ac.


- Jullan Dates

Source: U.S. Weekly Crop and Weather Bulletin

The experimental findings suggest that the driver of discrimination is not spectral shape, rather the relative difference of amplitude of the spectral mean values, which occurs when the crop species are observed at different growth stages.

This does not connote the absence of all information in the quantitative differences between diverse spectral bands. It simply says that the information contained within the inter-band variations is relatively less important than that inherent in the differences between the intensities of the mean reflectances. Stot.d in other words, if the spectral reflectance shapes of various crof or of a single crop at different growth stages, are normalized to a common average reflectance, the ability to discriminate between them is limited. Interband differences probably do arise, especially if the entire region of interest is imaged simultaneously, from momentary differences of leaf orientations, different fraction of underlying ground covered by the leaf canopy, differences in the reflecting properties of the underlying ground, and similar phenomena depending on geometry or upon electromagnetic wave impedances and transmissivities presented by the pattern of reflecting objects.

Nevertheless, the experimentnl data appears to indicate that attempts at exploiting differentials of spectral shapes in and by themselves is akin to attempting to distinguish targets from clutter using amplitude patterns alone. The resulting accuracies are limited.

The presence of the statistical fluctuations, typical of clutter phenomena, further reduces the discrimination capability. The phenomenology appears formally equivalent to the glint effect observed in radar.

The situation suggests, as a working hypothesis, a model equivalent to the bistatic radar mechanism. The sun provides the illuminator, the illuminated crop represents a "scintillating" target, and the sensor is the receiver. In this model, the discrimination error is analogous to a false alarm rate.

The hypothesis leads to the development of a generalized theory of discrimination, presented in Chapter 5 following.

### 5.0 THEORY OF DISCRIMINATION FROM RADIOMETRIC DATA

### 5.1 Simplified Theory

The objective of agricultural acreage mensuration is to determine the proportion of the crop or crops sought relative to the total area under analysis, independently of where each crop species is located geographically. A first approach to the theory can be made by invoking the following assumptions:

- Two species only; normal distribution of reflectances
- One radiometric band only
- Area under study sufficiently large so that mensuration errors Induced by the finite size of the resolution element (pixel) are negligible

It is shown in Appendix $E$ that, under these assumptions, the error attributable to discrimination in estimating the proportion of the crop sought is given by:

$$
\begin{equation*}
e_{d} \%=\frac{100}{p \sqrt{n}} \frac{k}{\left(\rho_{A}-\rho_{B}\right)} \sqrt{p \sigma_{A}^{2}+(1-p) \sigma_{B}^{2}} \tag{5-1}
\end{equation*}
$$

where:

$$
\begin{aligned}
p= & \text { proportion of crop A to total area } \\
e_{d} \%= & \text { percent error in } p \text { attributable to discrimination } \\
k= & \text { statistical confidence multiplier } \\
n= & \text { total number of pixels in scene (species A pixels }+ \\
& \text { species } B \text { pixels. }
\end{aligned}
$$

$\rho_{A}, \rho_{B}=$ means of the relative reflectances of species $A, B$ respectively.
$\sigma_{A}, \sigma_{B}=$ standard deviations of the fluctuations of $\rho_{A}, \rho_{B}$ respectively.

Expression (5-1) can also be written:

$$
\begin{equation*}
e_{d}^{\%}=\frac{100 k h_{A}}{p \sqrt{n}\left(1-\frac{\rho_{B}}{\rho_{A}}\right)} \sqrt{p-\left(\frac{\rho_{B}}{\rho_{A}}\right)^{2}(1-p)\left(\frac{h_{B}}{h_{A}}\right)^{2}} \tag{5-2}
\end{equation*}
$$

where:

$$
\begin{aligned}
& h_{A}=\frac{\sigma_{A}}{\rho_{A}}=\text { coefficient of variation of } \rho_{A} \\
& h_{B}=\frac{\sigma_{B}}{\rho_{B}}=\text { coefficient of variation of } \rho_{B} \\
& \text { all other symbols are as defined previously }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\rho_{B}}{\rho_{A}}=\text { is the contrast ratio between the reflectances of the } \\
& \text { two crops }
\end{aligned}
$$

### 5.2 Significance

There is currently no definitive experimental indication that the coefficients of variation differ systematically and reliably among crops. Until more compreheasive data become available, it is assumed that $h_{A}=h_{B}=h$.

Expression (5-2) can thus be modified by posing $h_{A}=h_{B}=h$. This assumption converts (5-2) into:

$$
\begin{equation*}
e_{d} \%=\frac{100 k h}{p \sqrt{n}\left(1-\frac{\rho_{B}}{\rho_{A}}\right)} \sqrt{p+(1-p)\left(\frac{\rho_{B}}{\rho_{A}}\right)^{2}} \tag{5-3}
\end{equation*}
$$

## Explicitating $n$ from (5-3) yields:

$$
\begin{equation*}
n=\frac{10^{4} h^{2} k^{2}}{p^{2}\left(e_{d} \%\right)^{2}\left(1-\frac{\rho_{B}}{\rho_{A}}\right)^{2}}\left[p+(1-p)\left(\frac{\rho_{B}}{\rho_{A}}\right)^{2}\right] \tag{5-4}
\end{equation*}
$$

Let us survey briefly the implications of this expression.
$p$ is a characteristic of the target crop, in fact it is the quantity to be measured. $p$ does vary from year to year: in most practical cases, the variation is relatively small. More significantly, p lies beyond the observer's control. He can however render the computation of $p$ more facile if he is privy to certain prior information.
$\mathbf{e}_{\mathrm{d}} \%$, the allowable one~sigma error, is established by the user requirements. It is also beyond the observer's control.
$\rho_{A}, \rho_{B}$ and $h$ are detexmined by the characteristics of the crops being inventorled. Control over $\rho_{A}, \rho_{B}$ is possible by selecting the timing of the observation.
n represents the number of pixels required to be observed. It is analogous to the "number of looks" in radar theory. It is controllable by varying the extent of the surface area being observed.

In is a driver of the characteristics and cost-effectiveness of the Data System, because:

1. The Data System's load is directly proportional to the number of pixels to be observed.
2. The costs of the data relay, preprocessing and information extraction portions of the Data System grow in proportion to the data load.

A feel for the relationships between parameters is available from Figure 5-1. It plots the total area required to be observed and measured versus the contrast ratio $\frac{\rho_{B}}{\rho_{A}}$, for the typical conditions: error desired 2\%; confidence one sigma ( $k=1$ ); $p \approx 0.15$ (a typical realistic value for densely cropped areas); and a linear pixel dimension of 30 meters (proposed for LANDSAT D). As shown in Chapter 4, the values of $h$ used as parameters, e.g. 0.1 and 0.3 , are typical of minimum and maximum values competing to realistic agricultural scenes.

Figure 5-1 can be converted to the characteristics of LANDSAT A, B, C, by increasing the ordinates by the square of the ratio of the respective resolutions, i.e. approximately fivefold.

A feel for typical practical values of the contrast ratio $\frac{\rho_{B}}{\rho_{A}}$ can be obtained from Figure 5-2, derived from the experimental data summarized in Chapter 4. It shows that under conservative system regimes, taking into account compression effects induced by the atmosphere, one should not assume design goals for $\frac{\rho_{B}}{\rho_{A}}$ significantly lower than 0.8 ; and that 0.95 represents an approximate upper bound, beyond which the area which must. be measured generally transcends practically attainable limits.

## FIGURE 5-1

AREA WHICH MUST BE OBSERVED AS A FUNCTION OF SCENE PARAMETERS



### 5.3 Selection of the Best Band

The simplified theory deals with a single band. Given a choice among various bands, it comes naturally to ask which band is indeed the best and how to select it.

The most efficient system is obviously the one which provides the best performance at minimum cost. From the aforegoing, this is tantamount to require the simultaneous minimization of the error and of the number of pixels which must be sampled. From expression (5-2), it is clear that the product $e_{d} \% \sqrt{n}$ can be taken as representing a figure of merit of the Data System. Thus, the "best" single band is the one which, for specified conditions of observation, minimizes the figure of merit $e_{d} \% \sqrt{n}$. This is equivalent, from (5-2), to minimizing the expression:

$$
\begin{equation*}
\cdot e_{d} \% \sqrt{n}=k \frac{h_{A}}{1-\frac{\rho_{B}}{\rho_{A}}} \sqrt{p+(1-p)\left(\frac{\rho_{B}}{\rho_{A}}\right)^{2}}{ }_{\left(\frac{h_{B}}{h_{A}}\right)^{2}} \tag{5-5}
\end{equation*}
$$

where the constant K subsumes all parameters not affected by the choice of band. Under the previously introduced assumptions $h_{A}=h_{B}=h$, (5-5) becomes:

$$
\begin{equation*}
e_{d} \% \sqrt{n}=K \frac{h}{1-\frac{\rho_{B}}{\rho_{A}}} \sqrt{p+(1-p)\left(\frac{\rho_{B}}{\rho_{A}}\right)^{2}} \tag{5-6}
\end{equation*}
$$

In other words, the "best" band consistently exhibits combinations of $\rho_{A}, \rho_{B}, h_{A}, h_{B}$ which minimize expression (5-5) -- or (5-6) if one does not have available the separate values of $h_{A}, h_{B}$.

Tests were run to determine the best band or bands from the available experimental data. To this effect, pairs of crops were chosen whose ground cover reaches substantial values, in excess of $50 \%$ during the season. The reflectance values of the fine-grained spectra were integrated within the wavelength intervals of the first five TM bands.

From (5-6), the number of pixels required to be observed at each of the available temporal dates were calculated. Typical experimental results are shown in Table $5-1$ for $h=0.3$, error $e_{d}=2 \%$, $p=0.15$, crops alfalfa versus barley, Hand County data. It is clear that the bands which require the lowest number of pixels, i.e. which minimize the "cost function," are the best.

TABLE 5-1

HLRAPER OF PIXELS (COST FUNCTION1 REQUIRED TO BE OBSERVEO WITHIN THE FLRST FIVE TM BAHOS

| TM BARID | WhYELEHGTH, UM | DATES, (1977) |  |  |  | OATES, (1977) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4/21 | 5/10 | 6/1 | 6/16 | 4/21 | 5/10 | 6/1 | 6/16 |
| 1 | 0.45-0.52 | * | $2.9 \times 10^{5}$ | $2.9 \times 10^{6}$ | $2.3 \times 10^{4}$ | - | 34 | 345 | 2.7 |
| 2 | 0.52-0.60 | $8.3 \times 10^{5}$ | $1.7 \times 10^{6}$ | $4.6 \times 10^{7}$ | $4.9 \times 10^{4}$ | 99 | 202 | 5,480 | 5.8 |
| 3 | 0,63-0,69 | $1.6 \times 10^{6}$ | $1.9 \times 10^{6}$ | $1.0 \times 10^{6}$ | $6 \times 10^{4}$ | 190 | 226 | 119 | 7.1 |
| 4 | $0.76-0.90$ | $3.2 \times 10^{4}$ | $2.6 \times 10^{4}$ | $3.2 \times 10^{5}$ | $8.4 \times 10^{3}$ | 3.8 | 3.1 | 38 | 1 |
| 5 | 1.55-1.75 | $4.5 \times 10^{7}$ | $2.7 \times 10^{5}$ | $4.0 \times 10^{5}$ | $2.5 \times 10^{5}$ | 15,360 | 32 | 48 | 30 |
|  |  | REqUIRED FOR DISCRIMIMATION |  |  |  | LONEST VALUE |  |  |  |

The example of Table 5-1 shows that TM Band 4 is the best for the specific case selected.

In general, the best band is case-dependent. Various tests run for diverse crops at $50 \%$ or better ground cover resulted in the orientative rankings of the discriminating power of the TM bands depicted in Table 5-2.

## TABLE 5-2

RANKIHG OF TM GANOS FOR DISCRLHIMABILITY BETWEH STAPLE CROPS

| IH BAAD | MAVELENGTH, MICRONS | APPROXIJATE <br> FIGLATIVE OF MERIT |
| :---: | :---: | :---: |
| 1 | $0.45-0.52$ | 0.1 |
| 2 | $0.52-0.60$ | 0.1 |
| 3 | $0.63-0.69$ | 0.15 |
| 4 | $0.76-0.90$ | 1 |
| 5 | $1.55-1.75$ | 0.3 |

### 5.4 Effect of Multiple Bands

Rigorous extension of the theory to multiple bands was not attempted In this effort: because the objective was to determine the drivers of Data System performance rather than to develop discrimination theory. Some general considerations on the effect of multiple bands can however be made at this time:

1. The addition of other bands to the best band will generally improve the discriminant power of the system; provided, that the signal-tofluctuation ratio this added to the best band is not so low as to
2. The addition of bands is beneficial - subject to the caveat expressed above - even if their spectral amplitudes are completely correlated (cf. Table D-2, Appendix D). This is because adding bands provides additional samples. Thus, if all bands possess the same discriminating power, the upper bound of the improvement is given by the sampling theorem, ie. it will equal $\sqrt{b}$, where $b$ is the number of bands combined. In practice, as indicated by Table 5-2, the benefit will be lower than this upper bound, if the best band has been selected initially.

In conclusion, all other conditions remaining invariant, multispectral discrimination can be expected to lower the number of pixels and cortespodding total area required to be observed (cf. Figure 5-1), but not by a strikingly large amount.
yield a decreased overall signal-to-fluctuation ratio for the multiple bands.

### 6.0 CONSEQUENCES OF THE THEORY ON THE CHARACTERISTICS OF THE DATA SYSTEM

### 6.1 Impact on the Frequency of Observation

The developments of previous Chapter 5 lead to the following conclusions regarding accurate discrimination:

1. It is not sufficient to image agricultural scenes "when all crops look good." They must be imaged when the statistical "distances" between their probability distributions reach sufficiently large values. The requires selecting moments of observation for which $\frac{\rho_{A}}{\rho_{A}}$ and $h_{A}, h_{B}$ are, simultaneously, sufficiently small.
2. The above conditions do not occur for all crops simultaneously: rather, they occur generally pairwise. The net result is that quality discrimination must be achieved by analyzing several optimally positioned temporal "cuts."

The typical situation is depicted in Figure 6-1. The time intervals during which the "statistical distances" are widest bear the generalized designation of "temporal windows", or simply "windows."

The duration of a window is not a univocal quantity. It is a function of:

1. The system's specified figure of merit, $e \% \sqrt{n}$. The more stringent the figure of merit --- i.e., the higher the desired accuracy and simultaneously the lower the number of pixels one wishes to process --- the smaller must be the value of function (5-5). Consequently the shorter will be the admissible window. In extreme

DATA FROM HAND CO., N.D.

SPECTRAL BAND: 0.76-0.90

$\square$ one-sigma interval of fluctuations
cases, i.e. If the specification of the figure of merit is made too stringent, the window may vanish altogether.
2. The system's sensitivity threshold $\left(\frac{\rho_{B}}{\rho_{A}}\right)_{t h}$. The previous derivations disregard exogenous fluctuations acting within the scene. In practice, such fluctuations exist. Thus it is necessary in real situations to allow a "margin of safety" on the threshold value of $\frac{\rho_{B}}{\rho_{A}}$. In other words, the actual $\frac{\rho_{B}}{\rho_{A}}$ must be chosen somewhat more Atringently, or lower, than its theoretically acceptable value,

The principal exugenous fluctuations stem from three sources:
o The granularity of the sensor; caused by quantization errors, calibration imperfections, instrumental errors.

- The variability of the atmospheric absorption across the scene.
o The variability of the path radiance across the scene.
As regards the sensor, a reasonable estimate, derived from MSS performance, is to assume that the theoretical maximum number of levels is reduced by a factor of two. Thus, for example the Thematic Mapper, which possesses a theoretical maximum of 256 levels, probably contains only approximately 100 univocal levels at a false alarm ratio of order $1 \%$.

Because experimental results show that the reflectance fluctuations of crop targets, also known as "scene noise," are considerably larger than thie vailue, sensor fluctuations are negligible to the effects of performing agricultural inventories by rediometric remote sensing from OSTA space platforms.

Atmospheric transmissivity fluctuations affect $\left(\frac{\rho_{B}}{\rho_{A}}\right)$ th are those
which occur between diverse points of the scene. which affect the entire scene uniformly affect both $\rho_{A}$ and $\rho_{B}$ by the same ratio and thus impact only slightly the ratio ${\left.\stackrel{\left(\rho_{\mathrm{B}}\right.}{\rho_{\mathrm{A}}}\right)_{\text {th }} \text {. }}$

Information on the intra-scene fluctuations is limited. Investigations by ECOsystems, using data from the US Turbidity Network indicate that fluctuations between separate points of the scene can reach peak excursions as high as 20\%, rms values of as much as $10 \%$. Figure $6-2$. $\rho$ The contribution of these fluctuations to the uncertainty in $\left(\frac{\rho_{A}}{\rho_{A}}\right)_{\text {th }}$ depends upon the distribution of the spectes $A, B$ across the scene. If $A$ and $B$ are adjacent to each other everywhere (locally compact), the fluctuations will have no effect on $\left(\frac{\rho_{B}}{\rho_{A}}\right)_{t h}$. If however the locations of $A$ and $B$ are disaggregated ( In one place, all the $B^{\prime}$ 's in another, distant from the first), then $\rho_{A}$ and $\rho_{B}$ will suffer different random variations. Pending the availability of supplementary information on atmospheric fluctuations, it is not unreasonable to assume that $\rho_{A}, \rho_{B}$ are both affected by uncorrelated random fluctuations of 3\%: their combined rms fluctuation thus would be of order $4 \%$, one sigma.

The third factor, variability of the path radiance, is even less known. It is not included in this calculation.
3. The amount of prior information available. If the phenologic progress for the year under study is poorly known, the average phenologic progressions are computed from historical statistics. Figure 6-3 illustrates the procedure for determining the temporal fluctuations of the phenologic stages from historical data, in this case from [10]. It is noted that the yearly progressions of mean reflectances are shown as reaching the same peak values. This is not necessarily true in nature: it is an assumption dictated by the scarcity of experimental data. In practice, it can be expected that the peak values will vary from year to year, in response to differing situations of ground cover, plant stress, and similar. The computation of the temporal excursions is however affected but little by fluctuations of reflectance levels.

MONTHLY MEAN AND ONE-SIGMA DISPERSION OF AVERAGE DAILY
TRANSMITTANCE DIFFERENTIAL


## FIGURE 6-3

PROCEDURE FOR CONSTRUCTING PHENOLOGICAL STATISTICS

ReLative
REFLECTANCE
TM BAND 4
Kansas 1973


+ SEVEN ADDITIONAL PAST YEARS
he = HEADINC
te $=$ TASSELING
pod = PODDING
- $=$ EMERGING

WHEAT
CORN
SOYBEANS - $=$

4. The presence of cloud cover. The random occurrence of clouds during the window intervals can be calculated or simulated with existing cloud models. This is further discussed in Chapter 7.

Figure 6-4 depicts typical windows. Note the effect upon window length of varying the sensitivity threshold of the system. The windows discussed previously are for cloudless conditions. Figure 6-5 depicts the required frequency of observation for selected regions of the world when cloud cover is taken into account for various levels of threshold sensitivity. Chapter 7 illustrates how the windows portrayed in Figure 6-4 for selected regions were expanded worldwide by simulation. The results were analogous to those portrayed in Figure 6-5: recurrence times of order 5 days are needed to achieve coverages commensurate with $96 \%$ to $98 \%$ completeness of crop acreage mensuration.

Chapter 8 discusses ways and means of achieving such low recurrence rates with minimal cost impact upon the system.

### 6.2 Impact on the Extent of the Area which must be Observed

The preceding theory shows that it is not necessary to observe, sample and process the entire surface of the region under study. If the times of observation are selected correctly, sampling of considerably smaller portions is sufficient. Let us examine this in more detail.

### 6.2.1 The Effect of Bounding and the Role of Auxiliary Information

The sensitivity of the area to be measured to its crop proportion is depicted in Figure 6-6, which also presents for comparison the propor'ions

FIGURE 6-4
STATISTICAL (ONE SIGMA) TEMPORAL WINDOW ENVELOPES OF REFLECTANCE DIFFEREHCE L'SSR, UKRAINE


FIGURE 6-5
REQLIRED RECURRENCE OF OBSERVATION TO ACHIEVE 99\% PROBABILITY OF VIEWING FOR SPECIFIED CLOUD COVER AS A FUNCTION OF SENSOR THRESHOLD SENSITIVITY $\Delta \rho$


FIGURE 6-6

DEPENDENCE OF AREA TO BE OBSERVED ON THE PROPORTION OF THE CROP TO BE INVENTORIED

ERROR DESIRED $=2 \%, 1 \sigma$

PIXEL RESOLUTION $=30$ meters

competing to selected areas of the world. It can be seen that the average proportions of crops are relatively small, calling for the sampling of rather extensive areas: but that the area to be observed decreases drastically as the crop proportion increases.

This leads to the concepr of "bounding," i.e. eliminating from the observed scene as many as possible areas known not to contain the crop or crops sought. The concept of bounding is obvious for such surface features as lakes, deserts, dense urban settlements. For other than these obvious features, proper bounding requires the availability of prior information, i.e. what areas under observations do or do not contain the crops sought. After bounding is accomplished to the best extent possible with the information available, stratification into diverse levels of crop proportions is effective in further reducing the area to be observed. Same as with bounding, proper stratification also requires prior information.

### 6.2.2 Sampling

If the moments of observation are correctly chosen, the area required to be observed will be significantly less than the net scene area still available, even after bounding and stratification. In other words, it will not be necessary to observe all of the residual area: observation of a smaller fraction generally suffices to yield the desired accuracies. (5-4) allows computation of the area required to be observed: however, it does not provide information as to what geographical locales within the scene should be observed.

$$
\begin{equation*}
\mathbf{e}_{s}=\frac{\tilde{\theta}}{\tilde{\mu} \sqrt{\mathrm{N}}} \tag{6-1}
\end{equation*}
$$

where:
$e_{s}=$ sampling error desired in the measurement of $p$
$N=$ number of sample segments
$\tilde{\partial}=$ fluctuation of proportion within the sampled area
$\tilde{\mu}=$ mean value of the proportion measured from the $N$ samples.

In practice, $\sigma$, or, equivalently, the coefficients of variation $\frac{\sigma}{\mu}$ of agricultural regions are not published nor available. What is avallable is the historical sequence of the region's proportions of target crops $p$. If the successive $p$ 's do not fluctuate too widely, one can assume their temporal average as representative of the region: otherwise, in absence of other information, it is prudent to assume the lowest value of $p$ experienced over the last several years.

This historical value of $p$ can be utilized in place of the unavailable $\frac{g}{\mu}$ by assuming that the population of samples to be chosen obeys a Bernoullian distribution, wherein each sample, or segment, is counted as zero if it contains a proportion of the target crop less than $p$ : and as 1, if more. With this assumption, the standard deviation $\tilde{0}$ is given by:

$$
\begin{equation*}
\tilde{o}=\sqrt{N P_{0}(1-p)} \tag{6-2}
\end{equation*}
$$

$$
1, \mathrm{~N}
$$

The mean $\tilde{p}$ of the sample is $\frac{\sum_{i} \quad p_{i}}{N}$, which, for $N$ sufficiently large, tends to $p$. The mean proportion containing the species sought is then Np , and expression (6-1) becomes:

$$
\begin{equation*}
e_{s}=\frac{\sqrt{N p(1-p)}}{N p}=\sqrt{\frac{1-p}{p}} \frac{1}{\sqrt{N}} \tag{6-3}
\end{equation*}
$$

Expressing $e_{s}$ as a percent error, and introducing the confidence multiplier $k$, ( $6-3$ ) becomes:

$$
\begin{equation*}
e_{s}=100 k \sqrt{\frac{1-p}{N p}} \tag{6-4}
\end{equation*}
$$

This expression is valid if Npk >> 1 , i.e. to the extent to which the Bernoullian approximation is close to the Gaussian distribution, and if $\mathrm{N} \ll$ total number of sample segments extractable from the observed scene. In practice, the errors are negligible at the $1 \%$ as long as $\mathrm{Npk} \geq 30$, and if $\mathrm{N} /($ Parent popuiation N$) \leq 2 \%$.

The formulation above applies to unstratified sampling. The effect of stratification is to increase the "effective" $p$ by parceling the samples according to the $p$ - density of the various strata within the scene.

Expression (6-4), or its originating form $(6-1)$, do not in and by themselves answer the question of how large to make each individual segment. As the segment's surface is made progressively larger, it
eventually will encompass the entire area to bs. inventoried. The number of segments becomes unity, yet the error becomes zero: thus (6-4) breaks down in this extreme case. A quantitative formulation requires knowledge of the distribution of $p$ within the region. In its absence, (6-4) still holds for conditions wherein the total area sampled is "sufficiently" small with respect to the total area being inventoried, and the number of segments is "sufficiently" large.

From ( $6-4$ ), the number of sample segments can be calculated:

$$
\begin{equation*}
N=\frac{10^{4} k^{2}(1-p)}{\left(e_{s} \%\right)^{2} p} \tag{6-5}
\end{equation*}
$$

We have seen that the total number of pixels required for discrimination Is given by expression (5-4). The question is, how many pixels to allocate to each segment, i.e. what is the optimum area of each segment.

If there are no other error sources, and if the errors induced by sampling and those induced by discrimination are uncorrelated, then the total error is, given by:

$$
\begin{equation*}
e_{t}=\sqrt{e_{s}^{2}+e_{d}^{2}} \tag{6-6}
\end{equation*}
$$

where $e_{t}$ is the inventory error specified by the user, $e_{s}$ is the sampling error, and $e_{d}$ is the discrimination error.

Expression (6-6) indicates that there is a choice in the selection of $N$, number of sample segments, and $n_{t}$, total number of pixels to be
observed: as long as neither of the corresponding errors $e_{s}$, $e_{d}$ equals the total error $\mathrm{e}_{\mathbf{t}}$, and subject further to the obvious constraint $\mathbb{N}<\mathbf{n}$. For example, suppose that one wishes to minimize $n_{t}$, which is proportional to the data system costs. To see what happens, let us re-write (6-6) using expressions (6-4) and (5-3):

$$
\begin{equation*}
e_{t}^{2}=\frac{h^{2}}{p^{2} n_{t}\left(1-\frac{\rho_{B}}{\rho_{A}}\right)^{2}}\left[p+(1-p)\left(\frac{\rho_{B}}{\rho_{A}}\right)^{2}\right]+\frac{1-p}{p N} \tag{6-7}
\end{equation*}
$$

Using for convenience:

$$
\begin{aligned}
& \frac{h^{2}}{p^{2}\left(1-\frac{\rho_{B}}{\rho_{A}}\right)^{2}}\left[p+(1-p)\left(\frac{\rho_{B}}{\rho_{A}}\right)\right]=A \\
& \frac{1-p}{p}=B
\end{aligned}
$$

and substituting in (6-7):

$$
\begin{equation*}
e_{t}^{2}=\frac{A}{n_{t}}+\frac{B}{N} \tag{6-8}
\end{equation*}
$$

whence:

$$
n_{t}=\frac{A}{e_{t}{ }^{2}-\frac{B}{N}}
$$

To find the minfmum $n_{t}$, since $e_{t}, A, B$ are constants, set the condition:

$$
\begin{equation*}
\frac{d n_{t}}{d N}=\frac{A B}{N^{2}\left(e_{t}^{2}-\frac{B}{N}\right)^{2}}=0 \tag{6-9}
\end{equation*}
$$

Condition (6-9) is satisfied when the denominator tends to infinity, 1.e. when $N+\infty$.

Since, by definition, $N$ cannot exceed $n_{t}$, the minimum value of $n_{t}$ is achieved when $n_{t}=N$. From (6-8), $e_{t}$ becomes:

$$
e_{t}=\frac{1}{\sqrt{n_{t}}} \sqrt{A+B}
$$

In this case, each pixel acts both as a discrimination element and as a sample segment. The total number of required pixels will be given by:

$$
\begin{equation*}
n=\frac{A+B}{e_{t}^{2}}=10^{4} \frac{A+B}{\left(e_{t} \%\right)^{2}} \tag{6-10}
\end{equation*}
$$

and will be somehwat larger than depicted in Figure 5-1. In practice, this mode of operation may be difficult to achieve by orbital sensors of the not too distant future, for two reasons: 1) it would entail a very rapid scan of the sensor during overpass; 2) it would entail high precision of pointing, to insure correct location of the "pixel segments" on the earth's surface,

On the other extreme, if one wishes to minimize the number of sample segments N , so as to minimize the sensor's angular excursions, it can be observed that $N$ 's lower limit is given by (6-5). However, choice of
this value of $N$ entails $n=\infty$, because it is tantamount to specifying $e_{d}=0$ in (6-6) and hence in (5-4). In this extreme case, the area of each segment would become infinite. Since this is not possible, the upper limit for this case is the already-discussed case of a single segment encompassing the entire area to be inventoried. As $N$ is increased from this lower limiting value, $n$ decreases monotonically until it reaches the value given by ( $6-10$ ).

Optimization of the relative weights to be placed on $e_{s}$ and $e_{d}$ requires the formulation of an additional relationship between $N$ and $\mathfrak{n}$. Such a relationship could be written, for example, if onw knew the improvement of sampling accuracy achievable by increasing the area subtended by each segment. This type of relationship would be a function of the characteristics of the observed region.

In the absence of such knowledge, one can assume that $e_{s}$ and $e_{d}$ possess equal weights in the total error budget:

$$
e_{d}=e_{s}=\frac{e_{t}}{\sqrt{2}}
$$

With this hypothesis, the total number of pixels required, $n_{t}$, is, from (5-3):

$$
\begin{equation*}
n_{t}=\frac{2 \times 10^{4} h^{2} k^{2}}{p^{2}\left(e_{t} \%\right)^{2}\left(1-\frac{\rho_{B}}{\rho_{A}}\right)^{2}}\left[p+(1-p)\left(\frac{\rho_{B}}{\rho_{A}}\right)^{2}\right] \tag{6-11}
\end{equation*}
$$

and the number of samples, $N$, is from (6-5):

$$
\begin{equation*}
N=\frac{2 \times 10^{4} k^{2}(1-p)}{\left(e_{t} \%\right)^{2} p} \tag{6-12}
\end{equation*}
$$

Consequently, the number of pixels per sample segment, $n_{s}$, becomes:

$$
\begin{equation*}
n_{s}-\frac{n^{t}}{N}=\frac{h^{2}}{p\left(1-\frac{\rho_{B}}{\rho_{A}}\right)^{2}}\left[\frac{p}{1-p}+\left(\frac{\rho_{B}}{\rho_{A}}\right)^{2}\right] \tag{6-13}
\end{equation*}
$$

Figure 6-7 shows $n_{s}$ as a function of $p$ for values of the parameters $e_{t}, h, \frac{\rho_{B}}{\rho_{A}}$ corresponding to practical situations. The strong effect of Increasing $p$ on reducing the sample areas is clearly evident. The corresponding number of segments, $N$, is shown as a function of $p$ in Figure 6-8.

As already mentioned, the computations abov: hold for unstratified sampling. Stratification generally reduces the number of samples required. USDA, for example, estimates (personal communications from Mr. WIIliam Wigton of USDA/ESCS) that the number of samples required to inventory U.S. wheat at a $2 \%$ sampling error is of order 1,000 with optimum stratification. This number would increase if one wished simultaneously to inventory additional crops.

The allocation of stratified samples is a function of the homogeneity of the areal distribution of acreage. To assess the latter, a map of the region's agricultural acreage is required. Because this varies with time, sampling schemes periodically require the availability of full frames, at intervals commensurate with the dynamics of the observed region: generally of order several years.

FIGURE 6-7

NUMBER OF PIXELS AND AREA OF EACH SEGMENT AS A FUNCTION OF PROPORTION


FIGURE 6-8
NUIBER OF SANPLES REqUIRED TO ACIIIEVE SPECIFIED ACCURACY AS A FUNCTION OF p
UNSTRATIFIED SARIPLING


FIGURE 6-9
NENSURATION ERROR AS A FUNCTION OF TOTAL AREA SANPLED
$r=30$ meters, $p=0.15$


### 6.2.3 Mensuration

If the total area to be inventoried is relatively small, an additional source of error, well known in surveying practice, arises due to the finite precision of the raasurement devices employed. In the case at hand, the precision is of order one pixel. The corresponding mensuration error is:

$$
\begin{equation*}
e_{m} \% \cong \frac{2 \gamma \beta r k}{\sqrt{A P N}} \cong \frac{2 \gamma \beta x k}{\sqrt{n P \delta}} \tag{6-14}
\end{equation*}
$$

Where:

$$
\begin{aligned}
e_{\mathrm{m}}^{\%}= & \text { mensuration error, percent of crop area inventoried } \\
\gamma & =\text { form factor of sample ( }=1 \text { for square samples) } \\
\beta= & \text { mensuration figure of merit ( } \sim 1 \text { for photointerpreter) } \\
r= & \text { linear dimension of pixel, meters } \\
k= & \text { statistical confidence multiplier ( }=1 \text { for } 1 \sigma \text { ) } \\
A= & \text { area of each segment, hectares } \\
p= & \text { proportion of crop area to total area } \\
N= & \text { number of sample segments } \\
n= & \text { total number of pixels in all sample segments } \\
\delta= & \text { area of each pixel, hectares ( } 0.09 \text { for } 30 \text { meter } \\
& \text { LANDSAT } D \text { pixels, } \approx 0.44 \text { for LANDSAT C pixels). }
\end{aligned}
$$

The mensuration error, depicted in Figure 6-9 for practically encountered parameters, must be taken into account when it becomes a substantial fraction of the allowable total error $e_{t}$. This can happen if the total area to be sampled is small -- brought about for example, if $P$ is very high and/or the contrast ratio $\frac{\rho_{B}}{\rho_{A}}$ is very low.

In this case the total error budget must be allocated between the three sources of error, f.e. sampling, discrimination, mensuration:

$$
\begin{equation*}
e_{t}^{2}=e_{s}^{2}+e_{d}^{2}+e_{m}^{2} \tag{6-15}
\end{equation*}
$$

In the absence of other prior knowledge, the error budgets are allocated equally. The simple manipulations result in expressions similar to $(6-11),(6-12),(6-13)$, with the additional term due to mensuration error included. Figure 6-10 depicts the three sources of statistical error arising in proportion estimation, and the corresponding expressions for each and for the total error.

### 6.2.4 Advantages and Practical Constraints of Sampling

Sampling can significantly reduce the systems data load: specifically, in spacecraft-to-ground data relay, in preprocessing, and in the information extraction function.

The reduction theoretically achievable by sampling vis-a-vis wall-to-wall imaging is shown in Figure 6-11. In the near future, technological constraints limit its full realization. For example, the precision of the platform's stabilization system impacts the accuracy with which the sample segment can be located on the earth's surface. The typical stabilization accuracy of the Multi Mission Modular Spacecraft (MMS), planned standard support for LANDSAT-D, is $\pm 0.25$ arc min rms. From an orbital altitude of order 700 Km , the corresponding ground smear is of order $\pm 140$ meters, $99 \%$ of the times.

FIGURE 6-10



FIGURE 6-11
reduction of data load theoretically achievable by sampling VERSUS WALL-TO-WALL COVERAGE


Sampling cannot be used to the total exclusion of all wall-to-wall data. The latter is still required periodically to update the stratification method.

### 6.3 Role of Auxiliary Information

The preceding developments illustrate how crop discrifuination improves if prior available information is exploited in conjunction with radiometric data. In particular, the availability of prior information appears essential to the crop identification function.

Limited experimental results indicate the possible appearance of narrow band spectral features peculiar to particular species at some phenologic stages. The rellable presence of such "indicators" would allow identification without prior information. So far, the only such effect known to the authors to have been observed is the "red shift" of wheat, at the pre-flowering stage, found by S. Ungar of GISS [15].

The value of prior information to the discrimination process is greater, the less redundant its contents with the radiometric information supplied by the sensor. The much used procedure of deriving basic spectral data from training sites is thus valuable only if natural crop spectra differ significantly one from the other. According to the model -previously described, this occurs primarily during selected time periods corresponding to the phenologic windows. It is in these periods that training site information has maximum value.

Errors of mensuration induced by the coarseness of the pixel dimension can be reduced by appropriately combining the low-resolution radiometric date with high-resolution aerophotographic data. The latter serve to delineate geometrical boundaries, the former to identify their internal contents.

Table 6-1 presents the types of amxiliary information which most significantly contribute to the accuracy of crop inventories.

## TABLE 6-1

PRENCIF: AUXILIARY DATA PECLIL IAR TO REGION OF INTEREST
CROP ACREAGE INVENTORY

## BASELIAE DATA

- STATISTICAL DATAI PRDDUCTION, ACREAGE, PROPORTIONS OF CROPS; FIELD SIZE STATISTICS.
- PHEMOLOGIC CALENDAR $+\cdots$ ITS STATISTICAL FLUCTUATION
- REPRESENTATIVE OR INDICATIVE SPECTRA
o meteostatistics, rainfall, Ihisolation, temperature, evapotranspiration
- ClOUD COVER STATISTICS
- TOPO HAPS, VARIOUS SCALES
- Latest conventional aerophotos
- latest land use maps
- ACRICULTURAL PRACTICES, AGRIECOHOMIC DATA
- STATISTICS ON PRINCIPAL CAUSES OF CROP LOSSES
- dESCRIPTIOK ANO DATA ON CONVENTIONAL (GROUND-BASED) INVENTORY METHODS
- CADASTRAL MAPS

GERIVED DATA
o AGROHET IKDICES

- acreage, yield, production trehos
o SIGNATURE EXTENSION IHDICES
SOFTUARE
i.
o COHVENTIONAL PROGRAMS MOOULES AND PACKAGES
- SPECIAL PROGRAM CLEARINGHOUSE

DATA-RELATED SERVICES
o RECOHARNDATION OF OPTIMLH SCENE TIMIHG

- RECOMNENDATIOH OF TUNING PARAMETERS FOR SPACE-DERIVED DATA


### 7.0 SIMULATION SCHEME AND RESULTS

The approach orginally concelved was to test the theory thus far presented on a worldwide basis, including the effects of samp? ing, phenologic cycles and cloud cover, by simulation on the Marshall Space Flight Center's Data System Dynamic Simulator (DSDS). The DSDS concept embodies these capabilities, including capability for radiometric readrut from imagery, magnetic tapes, or simulated scenes.

At the time of this simulation, the DSDS had not reached its Phase III development stage. Hence the simulation was tailored to accept, instead of the full complement of inputs in their orginal format, the following: 1) Syntietic sampling and discrimination derived from theory; 2) Synthetic model of the reflectance excursions induced by phenology, derived from empirical data; 3) Pre-determined geographic locations of the principal crops,derived from historical statistics; 4) Synthetic cloud cover statistics, derived from existing models.

The simulation scheme was elaborated jointly with NASA Marshall and with the General Electric Company's Huntsville Operations, who ran the simulation. General Electric's results are contained in separate report [8]. This chapter synopsizes how the simulation inputs were structured, and reports key results. The procedure adopted was the following:

1. The principal countries and. crops were determined from the statistical material presented in Chapter 2. Twenty-two countries were selected. Pre-simulation analyses showed that adequate results could be obtained by simulating only the crops Winter Wheat, Spring Wheat, Corn, Soybeans, and Rice.
2. For each selected country, phenologic calendars were obtained from [9].
3. Because not all crop calendars provided complete information on all phenologic stages, they were adjusted against the data of the SRS Crop Weather Bulletin [10]. From these, U.S. phenologic statistics were compiled following the procedure described in Chapter 6, illustrated in Figure 6-3. The mean and standard deviations of each phenologic stage's time of occurrence was computed.

Most foreign data were incomplete, e.g. provided only the mean dates of occurrence of a few phenologic stages. The phenostages were assumed to possess the same standard deviations as computed for the U.S. Subsequent work by ECOsystems [11] indicates the validity of this procedure for countries located in the temperature zones, and for tropical countries subject to regularly recurring weather phenomena, e.g. monscons in India.
4. The phenologic phasings differed considerably among the 22 countries selected. Equivalent phenologic zones were defined as those wherein the phasing between phenostages did not exceed 20 days. Five such phenologic zones were ouffieient to account for the selected 22 countries
5. The major countries, e.g. the U.S., USSR, Brazil, turned out to contain more than one phenologic zone. They were thus subdivided into sub-zones. Thirty-six regions were thus defined, as shown in Table 7-1 [8].
6. The major areas of cultivation of the five selected crops were identified and bounded in each of the 36 regions, from [14]. Analysis disclosed almost everywhere the presence of two major confusers: 1) permanent pastures, i.e. areas where grasslike crops are grown for grazing; and 2) hay-type crops, such as alfalfa, which are grasslike crops harvested

TABLE 7-1
COUNTRIES, REGIONS, CROPS AND NUMBER OF SAMPLES USED FOR STUDY

| COUNTRY \& REGION | CROPS | SIMULATION SAMPLES | ESTIMATED NO. OF OPERATIONAL SAMPLE SEGMENTS |
| :---: | :---: | :---: | :---: |
| Argentina | W, C | 45 | 1500 |
| Australia | W | 30 | 1000 |
| Bangladesh | R | 30 | 1000 |
| Brazil North | C | 30 | 1000 |
| Brazil South | C, S, R | 53 | 1767 |
| Canada | $W$ | 30 | 1000 |
| China North | $W, C, S, R$ | 60 | 2000 |
| China Central | $W, C, S, R$ | 60 | 2000 |
| China South | $W, C, S, R$ | 60 | 2000 |
| Egypt | ${ }^{\text {c }}$ | 30 | 1000 |
| France | W, C | 45 | 1500 |
| India Punjab | W, C | 45 | 1500 |
| India Ganges | W, C, R | 53 | 1767 |
| India Central | W, C, R | 53 | 1767 |
| India Bilaspur | $W, C, R$ | 53 | 1767 |
| India Coastal | $\ddot{\mathrm{R}}$ | 30 | 1000 |
| Indonesia | $\ddot{R}$ | 30 | 1000 |
| Italy | W, C, R | 53 | 1767 |
| Japan | R | 30 | 1000 |
| Mexico | C | 30 | 1000 |
| Pakistan | W | 30 | 1000 |
| Romania | W, C | 45 | 1500 |
| South Africa | C | 30 | 1000 |
| Philippines | R | 30 | 1000 |
| Thailand | R | 30 | 1000 |
| Turkey |  | 30 | 1000 |
| USA - Region A | W, C, S | 53 | 1500 |
| USA - Region B | W, C | 45 | 2000 |
| USA - Region C | W, C, S, R | 60 | 2000 |
| USA - Region D | $W, C, S, R$ | 60 | 2000 |
| USSR Latvia | W, C | 45 | 1500 |
| USSR Ukraine | W, C | 45 | 1500 |
| USSR Transvolga | W, C | 45 | 1500 |
| USSR Volga-Ural | W, C | 45 | 1500 |
| USSR Siberia | W, C | 45 | 1500 |
| Yugoslavia | W, C | 45 | 1500 |
| TOTAL |  | 1553 | 51355 |

$W=$ Wheat (Winter \& Spring); $C=$ Corn; $S=$ Soybeans; $R=$ Rice
periodically for hay, sometimes as much as 6 to 7 times yearly. The phenologic cycle of these two types of confusing crops affects the discrimination of the primary crops differently.

Permanent pastures generally reach the stage of maturity, i.e. of high reflectance, prior to the emergence of the wanted primary crops. It is thus necessary to "mask out" the former from the remainder of the scene by employing LANDSAT data gaterhed sufficiently early in the season. The haylike crops exhibit early season characteristics similar to those of thepastures, yet contribute additional information: their frequent cuttings display a characteristic temporal alternation of high and low reflectances. For reasons of simulation expediency, the haylike crops were assimilated within the simulation model to the permanent pastures. A corresponding pattern of reflectance progression was constructed for each of the 36 regions.
7. The phenologic 'windows" were constructed for each of the 36 regions. The mean reflectances corresponding to each phenostage were assumed for all regions to equal those observed in the available U.S. experimental data. The fluctuations around the means were assumed to equal $\pm 30 \%$ one sigma, and to be uncorrelated among different crops. The unperturbed threshold of separation between reflectances was set at in 20 years. This means that deviations from the reflectance of two crops must have a joint probability of occurrence of. 0.05 , i.e. individual probabilities of occurrence of (0.05) $\frac{1}{2}=$ 0.22 . On the assumption of normal distribution of the fluctuations, this yields a threshold fluctuation level of 0.76 for each of the two crops to be discriminated or $23 \%$ of their mean reflectances. The statistical window durations were set to the $95 \%$ confidence level: i.e. windows shorter than those which were modeled occur on the average less frequently than every 20 years.
8. An average sensitivity threshold was computed for all windows, by RSS combinations of : 3 ) $1 \%$ for sensor fluctuations; 2) $\pm 6 \%$ for atmospheric fluctuations as described In Chpater 6. In order not to overly complicate the simulation, the sensativity threshold was assumed fixed rather than proporticnal to the reflectance's amplitude: its value was selected as 0,02 , or $2 \%$ of the relative maximum reflectance of 1 . Typical examples of windows are depicted in Table 7-2.

TABLE 7-2
EXAPPLES OF HINDOA FORMAT USED in SIMULATION

| COUSNTRY | REGION | CROPS | WI HDON STARTS JULIAN GATE | W:UDOH DURATLONS DAYS. |
| :---: | :---: | :---: | :---: | :---: |
| U.S. | $A\left(\mathrm{IL}_{\mathrm{KS}}\right), 10,0 \mathrm{~K},$ | WH-P | 111 | 27 |
|  | $\begin{gathered} B(\mathrm{MT}, \mathrm{SD}, \mathrm{ND}, \\ (\mathrm{T}, \mathrm{CO}) \end{gathered}$ | SW-P | 118 | 40 |
|  | $\begin{array}{r} C(V A, K Y, N C, \\ T N, S C, C A, \\ A L, M I, L O\} \end{array}$ | C-S | 751 | 17 |
| USSR | LKRAINE | HN-S | 115 | 48 |

$$
\begin{aligned}
& W W=\text { Winter Wheat, } S W=\text { Spring Wheat, } P=\text { Pasture, } C=\text { Corn } \\
& S=\text { Soybeans }
\end{aligned}
$$

9. A sampling scheme was constructed within each region. Based upon the results derived in Chapter 6, good stratification and bounding was assumed: each candidate region was assigned 1,000 sample segments if it contained a single crop: and 1,500; 1767; 2000 segments if it contained two three, four crops respectively. For expediency of simulation, sub-multiples of these numbers of sample segments were chosen as inputs to DSDS: specifically, $30,45,53$ and 60 for single, double,
triple and quadruple trops respectively. This reduced set of segments was selected at random from the larger set." The list of countries, regions, crops and number of sample segments contained within each is shown in Table 7-1. Not therein shown but implicit in the previous construction of the windows is the presence of the selected confuser, pasture, discussed under point 7, preceding.
10. Simulation of the complete logic of the cumulation of information from multiple looks exceeded the constraints placed on this effort. In its place, target acquisition was specified as occurring when at least one "look" per phenologic window was possible. Whenever such look did not occur, either due to excessive shortness of the windows or impeded by the presence of cloud cover, the particular region and crop affected was considered as not having been surveyed.

The "one look" assumption, necessitated by simulation expediency, is reasonably adequate for the purposes of this project, because:
a. The specification of a single look per window is somewhat lax if the single look is all that is available. ECOsystems experience with real scenes shows that generally more frequent looks are needed: an approximate average is of order $1.5 \mathrm{p} \in \mathrm{r}$ window.
b. The requixement of one look per window is somewhat stringent if a sufficient number of earlier or later looks are provided wherefrom to reconstruct the state of affairs within the missed window.
11. Cloud cover statistics were incorporated in the simulation by the General Electric Company, in accordance with the available worldwide Allied cloud model. The model's statistics are supplied in terms of percent cloud cover.

A more cogent statistic, i.e., the "probability of effecting target acquisition," requires knowledge of the statistics of unobstructed vision within each scene, ie. of the patterns of "holes in the clouds." The DSDS, in its full phase III implementation, would have been capable o. deriving these statistics from automated analysis of historical LANDSAT and/or GOES and NIMBUS scenes. In its absence, it was instead decided to incorporate into the simulation two alternate cloud cover thresholds: $50 \%$ and $90 \%$. When cloud cover exceeded the threshold, the acquisition of a crop target was considered missed.

The principal results derived from the simulation for the LANDSAT-D configuration are indicated in Table 7-3.

TABLE 7-3
percent of simulated sample segments acquired by a single
orbiting platform [ B ]


The Table shows results similar to those presented in previous Figure 6-5: namely, a single orbiting platform with the characterisetics of LANDSAT-D achieves order of $90 \%$ of the desired worldwide observations. Whereas this result might at first blush appear incomemensurate with the specified accuracy of $06-98 \%$ worldwide, it does not tell the entire story: for not all countries and regions missed contribute equally to the world's production of the identified four staple crops. A more sophisticated simulation scheme is required to determine the weighted impact of missed observations.

In any event, modifications to future earth observation systems, other than the brute force expedient of multiple spacecraft, appear desirable and practically feasible, $=9$ discussed in the following chapter.

### 8.0 IMPACT UPON OSTA'S AGRICULTURAL DATA SYSTEMS OF THE NEXT DECADE

### 8.1 State of the Data System

The reason for being of OSTA Space Systems is to provide information. Thus the Data System represents their paramount element, which all other Subsystems are designed to support.

To compete with other acreage-measurement systems - e.g. aircraft, ground surveys - OSTA Agricultural Data Systems must provide better price/ performance. Industry tests the price/performance and market acceptance of a given product, prior to its entry to market, by a process known as product assurance. A fallout from this study is a preliminary product assurance review of OSTA agricultural information systems.

The principal design recommendations which affect the overall system's price-performance in Agricultural Applications are recapitulated following.

### 8.2 System Performance - Accuracy

To achieve market acceptance, the Data System's accuracy need be incrëased from the currently achieved average level of approximately $80-85 \%$, one sigma, to $96-98 \%$, 1.e. by a factor of at least three, preferably five. Except for the interference from cloud cover, there are no theoretical reasons barring this achievement. Improvements of on-board radiometric calibration, better registration of images, and similar sensor-oriented procedures, will assist but will not correct the problem. principal
bottleneck lies in the information-extraction subsytem: specifically it Is attributable to the manner in which radiometric information has been heretofore exploited.

Prinicpal corrective actions are:

- Exploitation of the phenologic windows phenomenon
- Integration of auxiliary information with the radiometric sensing data.

The first requires significant increases of the observations's recurrence frequency. The second requires making available suitable external information, approximately formatted.

### 8.2.1 System Performance-Recurrence Frequency

The data recurrence frequency must be sufficiently high to cope with the finite iime duration of the temporal windows, further reduced by cloud cover.

The polar-orbit, sun-synchronous, 185 km swath configuration characteristic of LANDSAT supplies adequate worldwide crop visibility if multiple (order of three), suitably phased orbiting platforms are provided.

Promising avenues to obviate this costly expedient are:

- Use of microwave sensing in conjunction with optical and near-TR sensing

The technical feasibility of active microwave sensinf from orbit was tested in the SEASAT-A spacecraft.

Limited experimental data in crop reflectances in the microwave spectrum indicate strong analogies with their behavior at optical wavelengths. Theory supports these findings.

- Increase in the sensor's swath width

Current thinking holds that nadir viewing of agricultural crops is preferable to observations from slant angles. No adequate experimental verification of this assumption was found in the literature: in fact, limited experimental data [ ] point to advantages from slant observations.

The effect of increased swath widths is to lower the repetition Interval required of the observations. Its drawback, i.e. reduced cross-track resolution or the need of more sophisticated sensors to maintain resolution, can be obviated by replacing wall-to-wall with sampled observations.

- Modification of orbital parameters.

Reductions of recurrence interval are achievable by modifying the platforms orbit. Those are however of lesser magnitude than what can be accomplished by the methods previously discussed.

The largest effect occurs if the orbital inclination is reduced so as to cover only the significant agricultural and/or forested regions of the world. Figure 8-1 suggests an orbital inclination of order $60^{\circ}$.

This system modification would entail a departure from sun-synchronous operation. The corresponding effects upon discrimination remain to be tested experimentally. It is noted that no adequate fustification for san-synchronism was found in the literature: numerous discussions with members of the remote sensing community indicate that the specification of this requirement is at present founded essentially upon expert opinion rather than upon observed fact.

FIGURE 8-1
CUMULATIVE VALUE OF WORLD'S AGRICULTURAL AND FORESTRY PRODUCTS VERSUS LATITIDE


### 8.2.2 System Performance - Role of Auxiliary Information

It is necessary to combine radiometric imagery with auxiliary information to reach levels of performance comptaible with the user's requirements. Most US auxiliary data are avialble frcm data bases managed by Federal Agencies; the residual $\dot{\text { is }}$ obtainable at State and Local levels.

The primary sources of foreign data are agencies at the Ministerial level. Albeit with exceptions, foreign data are significantily scantier and of more difficult access than in the US. The situation particulary critical with regard to aerophotography; even where avallable, this most important auxiliary information is so timeconsuming and laborious to retrieve as to very seriously affect the final product's timelines and price.

This situation can be obviated by providing easily accessible global photographic base coverage, at appropriate geometric resolutions. The refresh cycle should be commensurate with the period of obsolence of the observables: in the case of agriculture, it need be no shorter thian two or three years.

A means of implementing this service would be to reduce the RBV'S field of view, coupled with progressively stepped side look. Table 8-1 shows the times-resolution tradeoffs for complete coverage of the earth surface.

| TABLE $8+1$ |  |
| :---: | :---: |
| TIME REQUIRED FOR COMPLETE RBY COYERAGE OF THE EARTH'S |  |
| SURFACE YERSUS RESCLITTION |  |
| RESOLUTION HETERS | COVERAGE TINE REOURED, YEARS |
| 40 | 0.2 |
| 20 | 0.7 |
| 10 | 2.85 |

It can be seen that resolutions adequate for agricultural applications are achievable within practical time constraints.

### 8.3 System Costs

The wall-to-wall method of data acquisition is costly on two accounts:
o It requires very high data relay rates ( $84 \mathrm{Mbit} / \mathrm{sec}$ for LANDSAT D)
o It requires pre-processing subsystems of high throughput

The peak throughput requirements are particulariy high in certain periods of time. During the months from March through August in the northern hemisphere, and their counterparts in the southern, the simulation shows that as much as 500 observations are required daily.

Preliminary computations [ ] indicate that as much as $50 \%$ of the LANDSAT D system's running costs is attributable to the combination of TDRS channel rental lus cost of pre-processing.

As shown in Figure 6-11, reduction of the peak data load by as much as $30: 1$ is achievable by employing sampling as the primary data-gathering mode. Wall-to-wall data are required to provide lase information, but only occasionally.

The presence of reflectance fluctuations indicates another possible avenue of price/performance enhancement for agricultural observation systems, through relaxation of the sensor's NE $\triangle$ specifications. The sensor's sensitivity should be matched to the overall system's error budget, of which the "scene fluctuation" is the major contributor.

Sensor sensitivities of order 64 levels appear adequate. The resulting 4.1 reduction of sensor sensitivity can be traded off against lower-cost sensor implementation, or it can be exploited to increase the sensor's geometric resolution. It can be shown theoretically that the complete tradeoff would improve LANDSAT'D resolution to approximateiy 15 meters.

## APPENDICES

APPENDIX A THE UN/FAO SCENARIO FOR GLOBAL CROP FORECASTING

## APPENDIX B CURRENT CONVENTIONAL METHODS OF AGRICULTURAL CROP MEASUREMENT AND FORECASTING

# APPENDIX C DETERMINATION OF THE ACCURACIES OF AGRICULTURAL ACREAGE estimation achieved by orbiting data systems 

APPENDIX D ANALYSIS OF AVAILABLE CROP SPECTRA

APPENDIX E INFORMATION EXTRACTION FROM RADIOMETRIC DATA DISCRIMINATION THEORY

## APPENDIX A

## THE UN/FAO SCENARIO FOR GLOBAL CROP FORECASTING

The UN/FAO viewpoint can be synthesized by the following logical sequence of propositions:

1. The World's human food supply is dominated by cereals, which account for $53 \%$ of the total, followed by $12 \%$ tubers, $15 \%$ high-protein foods (meat, fish, milk), $20 \%$ vegetables, fats, sugar combined [2].
2. The global growth of cereal production outstrips population growth. Figure A-1 aypears to indicate that no global nutrition problem exists [12].
3. However, more detailed analysis of the cereal production and population trends of each of the three FAO zones, as in Figure A-2, reveals that the problem is one of distribution: in the most populous Zone C, production increases barely keep pace with population growth. Because Zone C food Intake is now only approximately $80 \%$ of the FAO norm, Zone C appears to be hopelessly undernourished.
4. A deeper step in the analysis, portrayed in Figure A-3, indicates that even in Zone $C$, cereal availability per capita significantiy outstrips the consumption, even though the apparent per capita consumption is quite high.
5. What causes the apparent inconsistency? Figure A-4 provides the explanation. Almost three billion large farm animals, not counting upwards of 10 billion heads of poultry, share the earth's surface with man. Up until the late fifties, these animals subsisted primarily on pasture and grass products; in the last decade atid a half, the composition of feed has been significantly enriched by
figure A-I
THE GLOBAL FOOD OUTLOOK



FIGU.RE A-2
THE THREE FHO WORLD ZONES

(1808
A Developed Market Economies
B Planned Market Economies
C Developing

THE ZONAL FOOD OUTLOOK


## FIGURE A-3

THE WORLD CEREAL BUDGET BY FAO ZONES

## AVAILABILITY OF CEREALS



HUMAN CONS UMPTION VERSUS AVAILABILITY

Aht

ZONE A
Eeed ZONE ..... B
$\because 0^{\circ}$ ZONE ..... C
$\because \%$ consumption
discretionary

$$
A-5
$$

FIGURE A-4

THE INCREASING USE OF CEREAL IN ANIMAL FEED

the so-called "concentrates," i.e. cereal products: corn, soy, wheat.
6. The reason? The growing demand for protein: its efficient and cost/effective production requires concentrated animal fodder. This "technological revolution" has vastly increased the importance of cereal products, much beyond the proportions depicted in Figure A-1 for human consumpiion alone. Since meat, milk and animal fat production is now driven by cereals availability, it is safe to estimate that circa $75 \%$ of global human food consumption is based on cereals.
7. The cure? Figure A-5 indicates that on the average, Zone A's surplus just matches Zone $C^{\prime} s$ deficit. The simple device of straightforward transfer would thus, at least on the surface, resolve the global food problem. That is, except for the economic implications, i.e. the matter of who would foot the bill.
8. The cost of such transfer was computed by the FAO in their recently compiled World Indicative Plan. As plotted in Figure A-5 the straightforward transfer of food including acquisition and shipment, would cost $\$ 63$ billion per year, growing to approximately $\$ 80$ billion in 1985. The cost of financing adequate infrastructures -- fërtilizer plants, farm machinery, education, etc. -- to enable Zone $C$ to become adequately self-sufficient would cost $\$ 25$ billion yearly growing to approximately $\$ 30$ billion a decade hence. In practice, a complete solution of the world's food problem would consist of a mixture of these two methods. In the limit, it would entail a yearly expenditure of almost $\$ 90$ billion yearly currently, growing to exceed $\$ 100$ billion yearly in the mid-1980's.
9. While these expenditures are not impossibly high -- the U.S. share, for example, of the "maximum plan" would not exceed $\$ 36$ billion yearly now, growing to $\$ 45$ billion in 1985, or approximately one-third of our current National Defense outaly -- they are not likely to be implemented in the near future.

FIGURE A-5

## THE WORLD FOOD DISTRIBUTION PROBLEM

## YEARLY CEREAL SURPLUS AND DEFICIT 10 year average (1963-1973)



COST OF TOTAL FOOD
ASSISTANCE TO ZONE C


Note that the contributions for agricultural aid to Zone $C$ in all forms, from all of Zone A and B combined, cover not more than approximately $10 \%$ of the requirements stated by the FAO.

The analysis above leads to the conclusion that the primary requirement to alleviate the global food problem is to manage as best as possible the scarce amount of agricultural aid currently flowing from Areas $A$ and B into Area C.

The requirements "universe" as seen from the UN/FAO outlook can be divided logically as follows:

1. Countries in which internal production consistently equals the demand, and which are thus self-sufficient nutritionally.
2. Countries whose internal production is consistently less than the demand, but which are able to import the deficiency through other sources of revenue. Typically, the OPEC countries.
3. Countries with consistent or periodic production-demand deficits and which are unable to fill the deficiency by imports.
4. Countries which are consistent overproducers and therefore exporters.

Countries which exhibit characteristic 1 are not important to the UN/FAO goal, because they already meet it: nor can they directiy assist in transferring surplus to other diet-deficient Countries.

Countries exhibiting characteristic 2, i.e. which are consistently in crop deficit but which can import the deficit through other means of revenue, are only important to the extent that their fluctuating import. ' requirements may increase or reduce the surplus available to the chronically deficient Countries.

Survey of Countries in Category 3, chronically deficient and unable to import the deficit, are of interest to assess the quantity of product they are likely to have available in any one year, and thus the extent of the current deficiency. This assessment serves as the basis for UN/FAO is planning of the amount of food afd to be provided. Aside from political considerations, the interest is proportional to the extent of the deficit and the number of persons affected.

Surveys of Countries in Category 4, consistent overproducers, are of primary interest in proportion to the extent of discretionary surplus they historically produce. The assessment of their production serves as the basis for planning the most appropriate distribution of food aid.

It is worth noting that the UN/FAO scenario presented above is idealized: in current practice, the food aid funds at the disposal of the UN are insufficient to cope with the demand. Also, ALD-dispensing Countries do not act in harmony and nor for the solely humanitarian purpose of providing their surplus where most needed: rather, political considerations tend to channel food aid where each donor deems it to be most opportune.

In spite of these departures from Ideal perfection, the UN/FAO scenario is of value as an approximate model to guide the equalization between deficits and surpluses.

Table A-1 dep:icts the aggregate distribution of human consumption in diet-deficient regions. It shows the presence of the staples already identified in the analysis of the U.S. balance of trade situation, plus the emergence of rice as a new major staple.

Table A-1 also indicates the 6 -year cumulative import-export trends for rice, and its principal producing Countries.

Table A-2 tabulates the Countries and crops candidates for survey as seen from the UN/FAO outlook.

# APPENDIX B <br> <br> CURRENT CONVENTIONAL METHODS OF AGRICULTURAL CROP <br> <br> CURRENT CONVENTIONAL METHODS OF AGRICULTURAL CROP <br> MEASUREMENT AND FORECASTING 

The measurement and forecasting of agricultural production are activities of major importance in virtually all countries of the world, as indicated in Figure B-1 [13].

The most sophisticated forecast system is the United States Department of Agriculture (USDA's) Economic and Conmodity Reporting Service (ERCS) Since much information is available on this system, it can convenlently be used to exemplify conventional procedures.

The key functions of the ERCS data gathering, information development and dissemination cycle are shown schematically in Figure B-2 [1].

Shown in Figure B-3 are SRS's three principal sources of data: a) voluntary reports from individual farmers ( 9.5 million questionnaires mailed yearly, approximately 3 million responses); b) objective yield measurements by specialists; c) direct sampling of selected farms by specialists (enumerators), through farmer interviews supported by map and aerial survey information.

A typical reporting form periodically filled out by individual farmers is shown in Figure B-4. Aerial photography at scale of order $1: 20,000$ is used by USDA's enumerators to precisely mensurate a Iimited number (approximately 17,000, covering $0.6 \%$ of total farm


FIGURE B-2
TYPICAL USDA (CORN, WHEAT) FORECAST AND FORECAST RELEASE CYCLE


FIGURE B - 3

## SIMPLIFIED USDA DATA GATHERING PROCEDURE


area) of agricultural producing units. The farmer's information is validated by planimetering the farm's area, accurately identified on the photograph.

Yield prediction (bushels per acre or quintals per hectare) is performed by: a) the farmer, who assesses the "condition" of the crop (its status with respect to what it was at the same time last year) ; and b) specialized personnel who perform "objective measurements" of various indicators of plant development on selected test plots; e.g., plant density, number of ears, number of spikelets, and so forth.

These reports are integrated by the central Crop Reporting Board, which issues monthly forecasts beginning 4 to 6 months prior to barvest, depending upon the crop. A final estimate of production for the current year is given shortly after the harvest.

USDA corrects their estimates over the following two years, based on additional information which becomes available on the amounts of grain products actually processed and sold by food industries. As evidenced by Figure B-5, the corrections are quite small when compared with the variances of selected other countries. Figure B-5 indicates that the fluctuations in typical developing Nations reflect a considerably higher degree of uncertainty than exists in developed Nations.

USDA's method of forecasting production is based upon the product of two factors: 1) the acreage planted; and 2) the estimated yield (bushels per acre or quintals per hectare). The yield estimate is based upon a regression formula of the type:


$$
Y=a X_{1}+b X_{2}+c X_{3}+d X_{4}
$$

where:
$X_{1}$ is the "condition" of the crop at time of estimate, reported by the farmer or crop surveyor;
$X_{2}$ is the precipitation, in inches, which occurred during the previous two months;
$X_{3}$ is the precipitation, in inches, which is predicted will fall. in the following two months;
$X_{4}$ is the historical growth of yield: for wheat, for example, approximately 3\% per annum.
$a, b, c, d$ are coefficients whose value is derived from regressing historical records over approximately the provious fifteen years.

Implicit in this formula is the hypothesis that the methods of cultivation: a) fertilizer input; b) weeding effectiveness; c) denamity of planting, and so forth, are essentially constant from year to year, and will be practiced by the individual farmer with the same dillgence and with the best technology known at present. Also implicit is the assumption of a "normal" year as regards crop disease. The occurrance of diseases such as wheat rust or corn blight, or unusual events such as floods, is factored in by the farmers and specialized survey personnel, who amend their estimate, upon detection, in the next monthly reporting period.

Note that in the formulation above, the only corrector of the estimates is precipitation: rainfall is assumed to be the principal
driving function for yield. While this assumption has been found adequate for the U.S., it may not be optimal for Nations subject to different climatologies. France, for example, employs the additional variable of integrated temperature (degree-days) for their yield model.

A measure of the accuracy of forecasts referenced to the "final" yearly estimate for the last several years is indicated in Figure B-6. Figure B-7 depicts the average historical trend of forecast accuracies. Figure B-8 shows the average accuracy experienced over the last 15 years for winter wheat, the major variety of U.S. wheat.

The relative contribution to the forecast of the acreage and yield components is shown in Figure $B-9$, which compares the fluctuations in U.S. wheat production with the variations in acreage and yield. Note that acreage fluctuations account for almost $50 \%$ of the total production variance.

The USDA system is substantially followed, with varying degrees of sophistication, by the developed Nations. In developing Nations, simpler systems are employed. Table $B-1$, based upon FAO data, categorizes the crop reporting systems employed by the majority of the world's nations. Note that the complete system composed of farmer reports, plus objective yield measurement plus enumeration by specialists is used in general in those countries which possess the highest levels of living and literacy rate. As the GNP per capita diminishes, crop measurement systems tend to eliminate farmer reports and rely primarily upon sample measurements by specialists, The frequency and sophistication of the sampling procedures


FIGURE B-8
WINTER WHEAT DATA COVER 1957-1972


FIGURE B-9
acreage change as a \% of total production change


100\% Means Acreage Change Was Greater Than Production Change (Yield Diminished)
$0 \%$ Means Acreage Change Did Not Influence Production Change

- Values Means Acreage Varied Oppositely To Production Change

TABLE B－1
COUNTRIES INVOLVED IN CROP SURVEY ANALYSIS

| Sherat cassificition |  |  |  | Shener anssification |  |  |  | Spher qussifiction |  |  |  | simer cassithcation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Country | Aifenge Forccast | Yield <br> Forecast | statistical Smpling | Cosmery | Acrivate forccast | Yield Forectst | Statistical Smipling | conntry | Acreage Forecast | Yield Forecast | Statisticnl Smpling | contry | Acreage Fontcast | Yteld Forecast | Stutistical Sutpllinf |
| Eumopt |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| dustria | A | － | $\cdots$ | Guadeliope | H | B | －－ | maya | A | ${ }^{4}$ | 5 | Scmillind | b | D | － |
| Relsium | A | B | －－ | Guatemala | A | ${ }^{\text {A }}$ | －－ | India | A | ： | －－ | Togo | $A$ | ${ }^{*}$ | － |
| Itrumera | A | $\wedge$ | 5 | Mritinlque | 1 | 8 | $\cdots$ | Indonestis | 8 | $A$ | －－ | Fr．West ．Africa | A | ${ }^{*}$ | $\cdots$ |
| finland | $\wedge$ | A | $s$ | Hexico | B | B | －． | Iran | D | D | － | coid Cosst | A | ${ }^{\prime \prime}$ | 5 |
|  | A | 日 | $s$ | Panaly | A | $\mathrm{A}^{*}$ | 5 | Iraq | c | c | －＊ | Kerys | $\wedge$ | $A$ | －－ |
| France | $\wedge$ | b | ．． | Puerto Rico | A | $\lambda^{*}$ | 5 | Israel | B | － | 5 | Medescar | c | c | ＊－ |
| Greces | \％ | B | － | USA | $\wedge$ | A | 5 | Japen | $\wedge$ | － | 5 | Mrerta | D | D | 5 |
| Ireland | A | $A$ | 5 | southamemea |  |  |  | Jordan | $c$ | c | －－ | $\begin{aligned} & \text { Motesita, } \\ & \text { Northern } \end{aligned}$ | 1 | 1 | －． |
| Iraly | 日 | B | 5 | Argentina | A | $A$ | 5 | Lebarson | c | c | －． | Mrasalad | A | 1 | ＊＊ |
| Ruxumoure | A | 8 | ．． | Brasil | c | c | S＊ | Pukistat． | $c$ | c | $\because$ | Murdesia，So． | A | c | $\cdots$ |
| Netherlands | ．${ }^{\text {A }}$ | B | $s$ | Gile | A | D | －＊ | Phillipines | 1 | B | －＋－ | Meroceo， $\mathrm{Sp}_{\text {p }}$ | A | N＊ | － |
| Moray | $\wedge$ | B | $s$ | Colmbia． | A | A ${ }^{\text {en }}$ | 明 | Stia | c | c | －－ | Santime | A | ${ }^{*}$ | － |
| Portural | $c$ | c | ．． | Ecredor | A | 人＊ | $\cdots$ | Thuilund | 1 | B | $\cdots$ | Tmzanis | D | D | $5{ }^{4}$ |
| Spain | A | B | －． | Fr，Guiann | －． | ． | －－ | Turkey | ${ }^{8}$ | B | 5 | Taisia | A | ${ }^{*}$ | $\cdots$ |
| smeden | A | B | 5 | Pareguy | A | C | S | arwien |  |  |  | thion South ${ }^{\text {a }}$ | $\wedge$ | A | －－ |
| Suitzerland | $A$ | H | －． | Peru | D | D | ．－ | Asprin | ${ }^{\text {E }}$ | ． | －－ | Usande | c | c | $\mathrm{s}^{+1}$ |
| United Kingdon | A | c | 5 | Surinam | A | $\mathrm{A}^{\text {a }}$ | －－ | Suder | B | ${ }^{8}$ | － | cocenina |  |  |  |
| Yuzoslaria | B | B | 5 | Uruguy | A | ${ }^{\text {A }}$ | $s$ | Besutoland | D | D | 5 | Nestrelia | A | A | $5{ }^{*}$ |
| Motarinc |  |  |  | Veneruela | B | 8 | ．－ | Bechuaniend | c | c | －． | Fiji | ， | A | － |
| Cundu | A | 4 | $s$ | Asta |  |  |  | Belifition Congo | 8 | 8 | － | Homil | $A$ | $A$ | $\cdots$ |
| Costa Rica | A | $\mathrm{A}^{*}$ | 5 | Burn | 1 | $A$ | $\cdots$ | Expt | 1 | $A^{\circ}$ | $\cdots$ | Her Caledaila | $\wedge$ | ${ }^{\text {A }}$ | －－ |
| Dominican Rypublic | A | A | $\cdots$ | Ceylm | A | B | $s$ | Cmeroans， Fr | $A$ | $\mathrm{A}^{-}$ | －－ | Hen zeated | A | A | \＄ |
| 11 Sslvalar | 日 | H | $\cdots$ | Cppas | A | $\mathrm{A}^{(1)}$ | $\cdots$ | Herocea，Fr． | c | c | － |  |  |  |  |

Explanation of Symbols：
A．Saripling of form level
B．Sampling at commene level
also tend to decrease with decreasing GNP per capita. Table $\cdot 2$ synthesis the world's current crop re. sorting systems into three fundamental categories: Developing, Intermediate, Advanced. The agricultural data-gathering network of the US is shown in Figure B-10, that of a typical intermediate county in Figure B-11.

The basis for potential improvements in acreage measurement procedures lies in the fact that present methods, for budgetary reasons, only measure limited samples. Increased sampling, or, in the limit, wall-to-wall measurements, would improve accuracy; performance of the current sampling task without laborious field surveys would reduce costs.

As regards yield estimates, the benefits of increased sampling still apply but with significant differences. Expected yield is based to a significant degree upon the assessment of present crop condition. To the extent that this quantity can be measured more accurately by increasing the number of samples, yield forecasts will be improved. However, yield also depends upon other factors more difficult to estimate: principal among these is weather. Therefore, until the state of technology will allow accurate prediction of weather, an irreducible uncertainty will remain In the forecast. Better sampling methods can, however, materially assist in reducing the errors of estimate.

$$
\therefore
$$

TABLE B-2

|  | Developing | Intermediate | Adyanced |
| :---: | :---: | :---: | :---: |
|  | Typical: Dominican Republic | Typical: Jtaly | Typical: United States of Anerica |
| Regional Administrative Structure | 1599 sections grouped into 69 ommunes | 7851 Commanes grouped into 91 Provinces | 1700 enuerated mress grouped into 44 States |
| Crops Surveyed | Maize, rice, beans, potatoes, onions, garlic, peanuts, co* conuts, oranges, bananas, cocoa, sugar cane, plantains, pineapple, coffee (in pod), avocado, pears, cotton, tobacco | Wheat, rye, barley, oats, maize, rice, sugar beets. potatoes, pers, besns, vineyards, fruits, olfves, linseed rapeseed, vegetables. tobacco, fibers | Greins, fodder crops, tuber and root crops, sugar crops, pulses, oilseeds, hay and trass seeds, vegetable seeds, fruits, nuts, vegetables, tabacco, fibers |
| Methods of Data Gathering | - Interview of producers by enunerators | - Crop area from perspal judgement, supplemented by cadastral survey <br> - Crop yields from local inquiry | - Direct inquirj to farmer respondents <br> - Enumerators with eerial photos <br> - Objective yield mosurenent by speciatists |
| Sampling Structure | None | Simple sampling procedure | Multi-frame stratified samplint procedures |
| Organization | Municipal Statistical Board in each commune | - Data frosi conmune collected by lacal correspondent assisted by piovincias agricultural inspector - Central Institute of Statistics issues technical directives and publishes results | - SRS HR staff supported by 44 State offices comprising 9 crop regions. <br> - Refer to Figure 9 |
| Frequency of Crop Reporting | Every 3 months | Two crop reports per year First estimate at planting time; second estimate at harvest | Multiple crop reports per yedr. Intentions to plant-yearly per crop. Acreage, crop concondition, production forecast - monthly for $3-6$ months. Final productiun and yield-yearly. |

FIGURE B-10
US CLOBL CROP PORECAST DNIA A NFORMMTION NETWORK-1977


FIGURE B-11
TYPICAL FOREIGN COUNTRX CROP INVENTORY \& FORECAST INFORMATION NETWORK (ITALY)


APPENDIX C
determination of the accuracies of agricultural acreage estimation achieved by orbiting data systems
(LANDSAT)

# APPENDIX C <br> DETERMINATION OF THE ACCURACIES OF AGRICULTURAL ACREAGE ESTIMATION <br> ACHIEVED BY ORBITING DATA SYSTEMS <br> (LANDSAT) 

### 1.0 Accuracies Achieved by ERTS Investigators

The ERTS crop classifications represent an intensive series performed during the early phases of the LANDSAT program from its launch in July 1972 until 1974. The spacecraft was at that time named ERTS, later changed to LANDSAT.

The avallable principal investigations reporting numerical results were used in the analysis [16] [17] [18] [19] [20] [21] [22] [23] [24].

Table C-1 synopsizes "the investigations analyzed. Nine ERTS investigators performed 224 distinct tests in ten locations, for seven major crop types. Thirty-two of these experiments included sufficiently complete description of the corresponding ground truth for complete comparison. Forty--three provided aggregate results against various estimates of the ground truth e.g. SRS estimates, State Yearbook data etc. The balance Indicated only the percent of pixels correctly identified.

The cumulative curve of the results, presented in Figure C-1A, graphs the accuracies achieved versus the percentage of the tests achieving them. It presents the results for both the inventory and the mapping, or land use,

TABLE C-1
SUMNARY OF ERTS-1 ACREAGE MEHSURATION RESULTS

| 1HVESTIGATOR | PLACE | OATE | M4WR CROPS | average FIELD SIZE | METHDD OF COHPUTATION | RARGE OF ERROR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R. Bryan Erb, MAS4 (87) | Hill Co. Montans Holt Co. . | 8/7/72 | Wheat | 42.8 Ha. | Planimeter | 0.1-35\% |
|  | Hebraska | 7/29/72 | Corn | 366.3 Ha. |  |  |
|  | cot, Cal. | 11/6/72 | Asparagus | 45.9 Ha , |  |  |
|  | Butte Co. . Cal. | 9/19/72 | Rice | 255.2 Ha . |  |  |
| D.S. 5 manett | Williams CO., N.O. | 6/5/73 | Spring Wheat <br> Durum <br> Oats <br> Carley | 15.8 Ha . | Pikel Count (Proportion to Maximum) | 0-25\% |
| Cratg L. <br> Wieqand, ARS <br> (31) | Hidalgo <br> Co. Tex. | $\begin{aligned} & 1 / 21 / 73 \\ & 5 / 27 / 73 \end{aligned}$ | $\left\{\begin{array}{l}\text { Vegetables } \\ \text { citrus } \\ \text { Cotton } \\ \text { Sorghum } \\ \text { Rangeland }\end{array}\right.$ | $\mathrm{No}-64.8 \mathrm{Ha}$. So- 8. 9 Ha. Cen-6.9 Ha. Tot $=12,2 \mathrm{Ha}$. | Plxel Count | 2-350\% |
| Marion $F$. Baumgardner. LARS (5) | Lubbock <br> Co.. Tex. <br> Greeley <br> Co., Kan. <br> Humboldt <br> Co.. Iowa | $\begin{aligned} & 6 / 18 / 73 \\ & 7 / 24 / 73 \\ & 6 / 19 / 73 \\ & 8 / 26 / 73 \end{aligned}$ | $\begin{aligned} & \left\{\begin{array}{l} \text { Wheat } \\ \text { Cotton } \\ \text { Sorghum } \end{array}\right. \\ & \left\{\begin{array}{l} \text { Wheat } \\ \text { Pasture } \\ \text { Corn } \\ \text { Soybeans } \end{array}\right. \end{aligned}$ | NA | Pixel Count (Proportion to Maximun) | 1-35\% |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| David A. Landgrebe. LARS (15) | 3 Counties in IJ. | 6/9/72 | Corn Soybeans | NA | Bfas Corrected s Uncorrected ERTS results determfined on basis of equal thon-equal weights. | 11-65\% |
|  | 12 Counties in Ind. | 8/21/73 | Corn Soybeans | NA | Pixel Count |  |
| Humberto C. Garuti. Argentina | Pampus of Argentina | 10/5/72 | Wheat <br> Barley <br> Rye <br> Corn | HA | Pixel Count | 1-55\% |
| J.P. Mahlstede, lowa State (10) | Ames, Iowa Dobn, Iowa | 8/72 | Corn <br> Alfalfa Soybeans | NA | Planfmeter | 7-40\% |
| Ralph Shay, NASA (14) | Indiana lifanois | -- | Corn Soybeans | 6-17 Ha. | Pixel Count <br> (Pro, to Max) | 0.5-214 |
| Gene A. Thorley, Univ. of Calif. (22) | San Joaquin Co.. Calif. | 7/24/72 | Range Vegetables Frut | 17 Ha . | Pixe] Count (Proportion to Maximum) | 0-380\% |

Numbers in parentheses indicate the number of tests performed by each investigator.
distribution of classification accuracies for erts investigations on acreage mensuration
A. CLASSIFICATION ACCURACY OF ERTS INVESTIGATIONS


POINTS: 224
B. CLASSIFICATION ACCURACY OF ERTS INVESTIGATIONS WITH PROPORTION


Number of data POINTS: 64
mode. Inventory mode means the determination of the proportion of a given crop within the area under examination, without however specifying the crop's geographic location. It is the mode universally used for estimating agricultural acreage. Mapping mode, as the word indicates, connotes the identification not only of the species sought, but also of their geometric boundaries and geographic locations. This mode is generally not employed In conventional agricultural acreage estimation, due its higher cost with respect to the inventory mode.

Note that the accurscies achleved in the mapping mode are lower than those competing to the inventory mode: this is quantitatively consistent with the fact that the mapping mode requires more information than proportion estimation: conversely, for equal informatiion content, its level of performance should be lower.

The accuracy of multispectral classification worsens when the proportion of target crops to the total scene is small: a subset was extracted from the total statistical population, based on the criterion of $10 \%$ or larger proportion of target crops. This yielded 64 distinct data points; the test results are presented in Figure C-IB. Note the higher accuracies achieved.

A breakdown of the mode - whether inventory or land use - employed for each experiment by each ERTS investigator is given in Table C-2.


One-hundred sixty-nine experiments reported the individual field areas. The distribution of the field sizes shown in Figure C-2 indcaters the predominance of fields below 50 hectares and above 10,000 hectares.

The sensitivity of the classification to area is indicated in Figure C-3 for each of the area classes given in Figure C-2. The general trend is that the mean error within each class is inversely related. to the area. Note however that there is a wide dispersion of errors for each area class: this is indicative of the wide dispersion in the facLion of the total scene comprised by the crops investigated. Figure C-4 summarizes the results for the 169 investigations.


TVLOI $10 \%$





The effect of small crop acreages was eliminated by reducing the set of investigations analyzed from 169 to 64 as indicater In Table C-3. Figures C-5 and C-6 present the distributions of investigations as a function of percent error for the 64 investigations with acreage fraction of crop greater than $10 \%$.

## TADLE C-3

AGRICULTURAL CROP CLASSIFICATION FRON ERTS IHVESTIGATIONS REOUCED TO PROUIOE ACREAGE FRACTION : 10\&

MUMBER OF INVEST\$GATIONS SELECTEO FOR THLS SAMPLE: 32 WITM G4 CROP DATA POINTS

NUNDER OF INYESTIGATORS PERFORHING THE 32 INVESTIGATIONS AMALYZED: 5

RANGE OF AREAS CLASSIFIED: 400 TO 100,000 HA: HEDJAN 1700

GEOGRAPHIC LOCATIONS: 9 STATES: (IL. IN, NT, IA, CA. ME, GA, TX, ND): APPROXJMATELY 20 COUNTIES

PAIMCIPAL CROPS SELECTED: WHEAT. SMALL GRAINS. CORN, SOYBEANS. BARLEY. PASTURE, ALFALFA

AVERAGE NUHEER OF DISTIHCT CROPS CLASSIFIED PER INVESTSCAJION: 3 TO 4

NUHBER OF OISTIHCT CROPS SELEFTED FOR COMPARISON: AVERAGE 2 PER INVESTIGATION, CRITERION: OKLY FROPS WHOSE ACREAGE RATIO TO TOTAL GROP ACREAGE EXCEEDED 10*

THESE YIELDED G4 DATA POINTS ON PRJNC:PAL CROPS.

The classification results are presented in Table C-4 for both the 224 and 64 investigation data sets. It shows that the one sigma accuracy of classification in the inventory mode for the total population of 224 data points $1574 \%$ this increases to $86 \%$ for the subset of 64 data points featuring $10 \%$ or greater proportiöns.

DISTRIBUTION CLASSIFICATION ERRORS
TOTAL NUMBER OF INVESTIGATIONS $=64$
ALL CROPS $\mathbf{~} \mathbf{1 0 \%}$ OF SCENE


FIGURE C-6
INVENTORY MODE

## TABLE Ca 4

accuracy of classification of crops achieved by eris investigators
universe of 224 classifichinon tests on 7 chops, 10 geographic locations, DiE SIGMA CONFIDENCE

|  | PROPORTION <br> ESTIMATION | MAPPING |
| :--- | :---: | :---: |
| ACCURACY $\%$ | 74 | 63 |
| ERROR $\%$ | 20 | 37 |

64 classification tests extracted from the above universe, wherein the CROP-TO-TOTAL-AREA PROPORTION WAS GREATER THAN 10\%.

| ACCURACY \% | 86 | 76 |
| :--- | :--- | :--- |
| ERROR $~$ | 14 | 24 |

### 2.0 Accuracies Achieved in Acreage Estimation after 1974

ERTS investigations ceased after 1974. To assess whether the early performance has improved in the approximately four years elapsed since, a number of subsequent investigations, performed by reputable organizations, were analyzed. Table $C-5$ is a summary of the key Landsat investigations dealing with crop classifications reported since 1974.

Figure $C-7$ presents the results of the investigations in the inventory and land use mode. The one sigma accuracy was $86.3 \%$ for the inventory mode and $73.4 \%$ for the land use mode respectively. The overall results are also shown in Table C-6.

| DESERIPTION | TAPLE C-5 |  |  |  |  | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SUMARYY OF KEY LANDSAI CLASSIFICATLON, INVESTIGATIONS SIMCE 1974 |  |  |  |  |  |
|  | LOCATION | $\begin{aligned} & \text { HUHEER OF } \\ & \text { CLASSES } \end{aligned}$ | average IHVEATORY ERROR | average LAHO USE ERROR | DATE | PROCEDURE |
| Area estimation of crops by digital analysis of Landsat Date, LARS, Purdue University | $\begin{aligned} & \text { Kansas } \\ & \mathbf{4 , 6 1 3 , 0 0 0 ~ \mathrm { ms } .} \end{aligned}$ | $\text { (wheat, }{ }^{2} \text { other) }$ | $\stackrel{1.58}{\text { compared with }}$ SRS estimate | * | 1977 | Computer classification of wheat. |
| High-altitude vs. Landsat imagery for digital crop iden= tification (LACIE) | Kern County, California 11,839 acres | ```10 (cotton. grapes. melons, toma- toes, sugar= beets, wheat, fallow, oranges. natural vegeta- tion. other)``` | $24 \%$ | 228 | 1977 | Computer crop classification |
| Pattern Recognition of solls 8 crops from space, USDA | Imperial <br> Valley, <br> Callfornia <br> (53 fields) | $\begin{aligned} & \text { 5 } \\ & \text { (alfalfa, bar- } \\ & \text { ley, sugarbeets, } \\ & \text { baresoil, salt } \\ & \text { flats) } \end{aligned}$ | - | $28 \%$ | 1975 | Computer crop classification |
| Land use inventory for Alto Lazio. ERIM | Alto Lazio, ttaly (53,284 ha.) | ```-5 (Piscolo, Semina- t!vi, Foreste, Orchards, Urban)``` | 12.38 | * | 1977 | Manual crop class from Landsat images |
| Landsat spectral signatures: studies with soil associations and vegetation. South Oakota Agriculturáa experiment station | Brookings Co. South Dakota 12,950 ha, | $\begin{aligned} & \text { (com, small } \\ & \text { grajn; grass, } \\ & \text { water) } \end{aligned}$ | 6.1\% | 6.3\% | 1978 | Computer classification of Landsat imagery |
| Cost, accuracy, and consistency compartsons of land use maps made from highaltitude afrcraft photography and ERTS imagery. | Central <br> Atlanttc | 6 <br> (urban, water, agricultural. forest, nonforested wet land | 12.18 | 30.5\% | 1975 | Manual classifi- <br> cation from <br> Landsat imagery |
| Landsat urban area delineations. Intralab Project 75-3 | Prince <br> Georges Co. H0 <br> 84, 100 ha. | $\underset{\substack{\text { (residential } \\ \text { other })}}{2}$ | 27\% | 278 | 1977 | Computer classification |
| Global agricultural productivity evaluation from Landsat date, J. Schubert, Gregory Geoscience Ltd. | 4 Canadian test sites and acres analyzed <br> 1) Swiftcurrent | (wheat, other) |  | ** | 1976 | ```Manual classifi- cation from en- hanced Landsat imagery``` |
|  | (1844 acres) |  | 0\% | - | July |  |
|  | (7204 acres) | , | $0.6 \%$ | - | 3417 1975 |  |
|  | (6960 acres) |  | 3.48 | - | $\begin{aligned} & \text { July } \\ & 1976 \end{aligned}$ | - |
|  | 2) Raymond (2175 acres) | $\stackrel{2}{(\text { wheat, other) }}$ | 3.8\% | - | $\begin{aligned} & \text { July } \\ & 1974 \end{aligned}$ |  |
|  | (481) acres) |  | -4.7\% | - | July |  |
|  | 3) Melford (4206 acres) | *. | -13.18 | - | Aug. <br> 1976 |  |



FIGURE C-7
LANDSAT POST 74 CROP CLASSIFICATION RESULTS

TOTAL NO. IN SAMPLE $=18$


## TABLE Co

ACCURACY OF CLASSIFICATION OF CROPS ACHIEVED FROM 1974 TO 1978
URIGLival PAGE Li OF POOR QUALITY

### 3.0 Description of the Experiments in ERTS Crop Classification

Tables C-7 through C-14 present the highlights of each ERTS experiment: the crops analyzed, their locations, the dates of the ERTS observations, the method of analysis employed.

Figures C-8 through C-16 depict the scattergrams of the differences between measured values and ground truth. The scattergrams present for each group of investigations, the error experienced in measuring each crop area versus the actual areas. .The solid downward sloping straight lines represent the error of mensuration $e_{m} \%$ expected from the ERTS pixel size. on the assumption of perfect discrimination. They obey: the relationship:


Where:
$r$ is the average dimension of the ERTS pixel 770 meters
A is the area mensurated in hectares

TABLE C-7
3*
HIGHLIGHTS OF ERIS EXPERIMENT

Source: The ERTS-1 Investigation (ER-600): Volume I - ERTS-1 Agricultural Analysis, R. Bryan Erb, NASA, August 1974.

## Scene Content:

Hill County Summer Fallow \& Sod 55\% Spring Wheat 24\% Winter Wheat 19\% Barley . 2\%

Holt County
Field Corn 67\% Grass \& Pasture 16\% Sunflowers 4\% Popcorn \& Field Corn 4\% Popcorn 4\%
Field Corn \& Grain Sorghum 3\% Disked Fallow 2\%

| Imperial County | Bare Soil | $40 \%$ |
| :--- | :--- | ---: |
|  | Asparagus | $34 \%$ |
|  | Alfalfa | $15 \%$ |
|  | Carrots | $5 \%$ |
|  | Melons | $4 \%$ |
|  | Light Veg. | $2 \%$ |
| Butte County |  |  |
|  | Rice | $52 \%$ |
|  | Fallow | $41 \%$ |
|  | Corn | $6 \%$ |
|  | Alfalfa | $1 \%$ |
|  | Sugar beets. |  |

Imperial County 11/6/72
Alfalfa - Growing
Winter Wheat - Harvesting -
Barley - Harvesting
Holt County 7/29/72
Field Corn - Tasseling
Grass \& Pasture (Native Hay) - Harvesting
Sunflowers - Heading
Grain Sorghum - Heading
Average Field Size:
Hill County - 42.8 Ha .
Holt County - 366.3 Ha.
Method of Computation:

9/19/72
Rice - Maturing \& Harvesting
Corn - 100\% Ground Cover
Sugar beets - Harvesting

Imperial County -45.9 Ha .
Butte County - 225.2 Ha .

Mechanical/electronic planimeter to manually trace field borders.
Additive color-enhanced ERTS-1 imagery of about $1: 130,000$ scale used as base photography for measurements.

Universal Transverse Mercator coordinate system with grid prepared for enhance ERTS-1 imagery of about $1: 130,000$ scale to locate fields.

## FIGURE C-8

EXPERIMENTAL ERRORS IN GEOMETRIC MENSURATION FROM LANDSAT IMAGERY - ERB
unchitiol PAgh
OF POOR QUAMJT:


TABLE C-8

Source: Reflectance of Vegetation, Soil, and Water, Craig L. Wiegand et al., Agricultural Research Service, USDA, November 1974.

Scene Content:
Urban
Agricultural
Vegetables
Citrus
Cotton \& Sorghum
Idle Cropland
Dry Debris
Rangeland
Grass
Shrub
Non-agricultural
Water

## Time and Place of Measurement:

January 21 and May 27, 1973, Hidalgo County, Texas.

## Average Field Size:

Total County - 12.2 Ha .
Northern Region Only (Range and Pasture) - 64.8 Ha.
Central Region Only (General Farming \& Citrus Growing) - 6.9 Ha .
Southern Region Only (Winter Vegetables) - 8.9 Ha ,

## Method of Computation:

Ground truth information was obtained on several items pertaining to crops, crop histories, and farming practices by interviewing approximately 400 farmers. Typical ground truth included crop species, stage of maturity, row spacing, plant height, percent ground cover, row direction, Mussel. color of soil, recent cultural practices, and other qualitative information.

A classification was determined for every pixel in Hidalgo County (849,000 pixels in January and 948,000 pixels in May), and a comparison was made, using Student's t-test, between actual and computer acreage estimates of hidalgo County for the categories of vegetable, citrus, cotton and sorghum, idle cropland, grass, and mixed shrub.

## \% ERROR IN MENSURATION



GROUND TRUTH MEASUREMENT - hectares

TABLE C-9

## HIGHLIGHTS OF ERIS EXPERIMENT

Source: Evaluation and Comparison of ERTS Measurements of Major Crops and Soil Associations for Selected Test Sites in the Central United States, Marion F. Baumgardner and Staff, LARS; Purdue University, March 1974.

Scene Content:
Lubbock Co., Texas - Wheat - harvesting Cotton Grain Sorghum Water

| Greeley Co., Kan. - | Hast Red Winter Wheat - heading <br>  <br>  <br>  <br>  <br> Fallow (Bare Soil) |
| ---: | :--- |
| Humber Pasture |  |

Time of Measurement:
Lubbock Co., Texas - June 18 and July 24, 1973
Greeley Co., Kan. - June 19, 1973
Humboldt Co., Iowa - August 26, 1973
Method of Computation:
$\checkmark$
Lubbock Co., Texas - Acreage estimates were made from percentage of points in each class. The total area in the county was maultiplied by these percentages to obtain an estimate of area in each cover type.

Greeley Co., Kan. - Area of wheat was calculated from classification results.
Humboldt Co., Iowa - Area of crops was calculated from classification results.

## FIGURE C-10

geographical location of test sites in the central united states - baumgardner


1 LUBBOCK, TEXAS REGTCNAL TEST SITE
2 BOONE AND HENDRICKS COUNTIES, INDIANA
3 GREELEY COUNTY, KANSAS

4 HUMBOLDT COUNTY, IOWA
5 MCPHERSON COUNTY, NEBRASKA
6 WELLS COUNTY, NORTH DAKOTA


## TABLE C-10

## HIGHLIGHTS OF ERTS EXPERIMENT

Source: A Study of the Utilization of ERTS-1 Data from the Wabash River Basin, David A. Landgrebe and Staff, LARS, Purdue University, August 1974.

Scene Content:

| Illinois - Corn $\quad 40 \%$  <br>  Soybeans 18\%  <br>  Grain Sorghum  <br>  Alfalfa  <br>  Hay  <br>  Pasture  <br>  Small Grain Stubble $42 \%$ <br>  Woods  <br>  Urban  | Indiana - Corm $\quad 32 \%$   <br>  Soybeans $\quad 25 \%$   <br>  Hay   <br>  Pasture   <br>  Small Grain Stubble $43 \%$  <br>  Woods   <br>  Urban   |
| :---: | :---: |
| Time and Place of Measurement: $\because$ |  |
| Ilifnois - 8/9/72 | Indiana - 8/21/73 |
| DeKalb County | Lake County Newton County |
| Ogle County | Porter County White County |
|  | LaPorte County Benton County |
| Lee County <br> (Analysis performed on total information | Starke County Warren County |
| from these three counties.) | Pulaski County Fountain County |
|  | Casper County Tippecanoe County |
|  | (Analysis performed on total in- |
|  | formation from these twelve |

## Method of Computation:

Illinois - Bias corrected and uncorrected ERTS results were determined, each on the basis of equal weights and non-equal weights, resulting in four acreage estimates made from ERTS data. The method used for unbiasing classification results involves multiplying the county classification results by the inverse of the test field classification performance matrix as follows:

$$
A=C P^{-1}
$$

Where:
$A=1 \times n$ vector of crop acreages
$-\mathbb{C}=$ classification vector with $n$ crops or classes
$\mathrm{P}^{-1}=$ inverse of $\mathrm{n} \times \mathrm{n}$ classification performance matrix

Indiana - Acreage measurements based on pixel count classification.


TABLE C-11

## HIGHLIGHTS OF ERTS EXPERIMENT

## Source: Identification and Quantification of Agriculture Crops, Determination of Dynamics of Land Use and Agricultural Census, Eng. Humberto C. Garuti, Secretaria De Agricultura Y Ganaderia, Argentina, February 1974.

## Scene Content:

Wheat - eared (flowering - grained)
Barley
Rye
Corn - germinated
Grain Sorghum - ready to plant
Forage Sorghum - ready to plant
Soya - planted
Mijo - planted
Sunflower - planted
Alfalfa - shooted
Mixed Pasture - shooted
Natural Pasture - shooted
Winter Cereal
Time and Place of Measurement:
Pampus Region of Argentina - 10/5/72
Method of Computation:

1. Manual Interpretation: Acreage estimates were obtained from 1:1,000,000 amplified transparencies of false color images after classification.
2. Pixel Count: Ground truth available for only one scene; since the 3 scenes used were successive frames from one ERTS pass, ground truth used as training data from first scene, then processed results from first scene used as initial training data for next scene, etc. ( $10 \%$ overlap between scenes.


## Conclusions:

The best method for investigating large cultivated areas is automatic discrimination; which assures speed and consideration of large areas. A $96 \%$ safety factor was obtained in the general preliminary classification.

## HIGHLIGHTS OF ERTS EXPERTMENT

> Source: $\frac{\text { Remote Sensing In Iowa Agriculture: Jdentification and Clas- }}{\text { Sification of Iowa }{ }^{1} \text { s Crops, Soils, and Forestry Resources }}$ $\frac{\text { Using ERTS-1 and Complimentary Underfilght Imagery, J. . Mahl- }}{\text { stede et al., Iowa State University, May } 1974 .}$

Scene Content:
Corn
Alfalfa
Soybeans
Oats
Pasture
Water
Forest
Time and Place of Measurement:
Ames, Iowa - August 1972
Doon, Iowa - August 1972
Method of Computation:
Optical Processing


GROUND TRUTH MEASUREMENT - hectares
NOILVZASNATK NI צOצ\&a \%

# Source: EOS Thematic Mapper Technical Review, Ralph Shay et al., April 30 - May 2, 1975. 

Scene Content:
Corn
Soybeans
Time and Place of Measurement:
Midweat (Indiana and Illinois
Average Field Size:
6-17 Ha.
Method of Computation:
Pixel Count


## TABLE C-14

## HIGHLIGHTS OF ERTS EXPERIMENT

Source: Regional Apricultural Surveys Using ERTS-1 Data, Gene A. Thorley et al., Center for Remote Sensing Reaearch, University of California, UN 640.
## Scene Content:

| Range | Sugar Beets |
| :--- | :--- |
| Pasture | Walnut |
| Plowed Land | Fruit Trees |
| Grapes | Burned Areas |
| Alfalfa | Beans |
| Barley | Harvested |
| Sorghum | Cucumber |
| Tomato |  |

Time and Place of Measurement:
San Joaquin County, California July 26, $197 \%$
Average Field Size:
Approximately 17 Ha .
Method of Computation:

```
Manual Interpretation
Automatic Interpretation
```



## APPENDIX D

## ANALYSIS OF AVAILABLE CROP SPECTRA

It has been known for a long time that laboratory spectra of single leaves exhibit a considerable degree of qualitative similarity. Personal commaication by Professor R.N. Colwell of the Univercity of California, Berkely, in 1975, who obtained numerous laboratory spectrograms, indicated that essentialiy "all leaves look alike." An example of this qualitative likeness is depicted in Figure D-1 which shows the qualitative similarities in the reflectances of single leafs in the spectral region from 0.5 to $2.5 \mu \mathrm{~m}$ of various plants: Bean, Avocado, Sorghum, Pigweed, Corn, Soybean, Orange, Peach, Cotton.

Leaf spectra however are not necessarily good indicators of the spectral reflectances of entire plants: especially since the available leaf spectra are taken "in vitro" at essentially normal incidences. One could speculate that specific patterns of leaves peculiar to each plant may emphasize preferred directions of reflection, or possibly even enhance one spectral region over others.

Analyses of spectra contained in the literature, see Table Dul, did qualitatively confirm the hypothesis of "similarity" of spectral shapes: however, the difficul+ies encountered in resolving discrepancies of calibration, stage of plant development, illumination and viewing angles, prohibited the formulation of general relationships valid between diverse plants, even between plants belonging to the same species but at differing stages of development, or subjected to different otresses.

FIGURE D-1



Gausman, Allen, Wiegand et.al., USDA-ARS Techntin Builetin No. 1465, March 1973.

## 

PRINCIPAL SPECTRAL DATA BASES AVAILABLE IN THE LITERATOR

*Summary of date from other sources.

The resolution of this question had to await the advent of fine-prained, calibrated spectra.

Figures $D-2$ and $D-3$ present spectral radiance values produced by the Goddard Institute for Space Studies from a field program conducted in Imperial Valley, California, Figure :D-2 shows spectra of the crops alfalfa, melons and sorghum at a 40 to $50 \%$ leaf cover. Figure D-3 shows the spectra of the crops wheat, alfalfa, sugar beets, sorghum, asparagus, each at an approximate leaf cover of $100 \%$. These plots show that diverse crops at similar stages of development, 1.e. at similar amounts of leaf cover, exhibit qualitatively similar spectral signatures.

## FIGURE D-2

SPECTRA OF VARIOUS CROPS AT 40-50名 LEAF COVER IN IMPERIAL VAILEY, CALIFORNIA


MELONS


SORGHMM

alfalfa

FIGURE D-3
SPECTRA OF VARIOUS CROPS AT 100\% LEAF COVER IU IMPERIAL VALIEY, CALIFORNIA


A more quantitative determination of the spectral similarity between crops at like levels of leaf cover is obtained by examining the ratio between various spectral bands. For example, Table D-2 presents results of a correlation analysis between the spectral bands 0.7 to $0.8 \mu \mathrm{~m}$ and 0.8 to $0.9 \mu$ for wheat and alfalfa crops with greater than $60 \%$ leaf cover.

| TABLE D-2 |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Number of Spectra Used: 149 |  |  |  |
| RESULTS: | COEFFICIEMT | SLOPE | $\begin{aligned} & \text { STD. ERROR } \\ & \text { of SLOPE } \end{aligned}$ |
| mheat | 0.93 | 0.58 | 0.05 |
| MFALFA | 0.97 | 0.58 | 0.02 |
| S0IL | 0.98 | 1.14 | 0.04 |
| 50urce: | cosystens amalysis vided by Dr. S. ce Science. | selected sub of the Godd | et of spectra Institute for |

Each crop exhibits a "slope" (ratio of amplitude of band 0.8-0.9 to band $0.7-0.8 \mu \mathrm{~m}$ ) of 0.58 and a high degree of correlation between the two spectral bands. The closeness of the slope values indicates that these crops generate similarly shaped spectra: whereas the high correlations indicate that the computed slope, hence the shape of the spectra is relatively stable for each crop at leaf cover areas greater than $60 \%$. A number of such correlations were performed by ECOsystems with results similar to those obtained by other workers.

Table D-3 lists relative reflectances of irrigated wheat in the two spectral bands $0.74-0.76 \mu \mathrm{~m}$ and $0.78-0.80 \mu \mathrm{~m}$ and the ratio between the two
for the phonologic stages from early jointing through dead ripe for Bushland, Texas. [ ] These two bands show significant amplitude changes throughout the growth period. They exhibit 1 sigma variations of approximately $20 \%$ in the band $0.74-0.76 \mu \mathrm{~m}$ and $26 \%$ in the band $0.78-0.80 \mu \mathrm{~m}$. The ratio between the two bands remains relatively constant, however, through this growth period, exhibiting a 1 sigma variation of approximately 8\%. From these results it can be concluded that while the wheat field exhibits significant amplitude changes in mean reflectance throughout the later stages of the crop's growth, the shape of the spectra remains relatively constant.


This relationship appears to hold for other crops as well. Figures D-4 and D-5 present spectral plots of various crops throughout their growth for, Hand County, South Dakota [ ] and Bushland, Texas. The similarity of shape, although with significant variations in amplitude from stage to stage are evident in these plots.

Figure D-6 plots single-date "snapshots" of spectra of various ground covers taken at the Bushland, Texas site. Note the emergence of irrigated wheat from the soil cover spectrum on the earlier date: its further growth, and the emergence of dryland wheat, on the later date. On the later date, whereas the spectral shapes of the emerging crops are qualitatively similar, their average magnitudes begin to differ significantly.

A striking example of the differences of amplitude displayed by crops at certain times during their growth cycle is shown in Figure D-7. Note the significant emergence of the crop rye over the others: its spectral shape, however, is qualitatively not very different from the spectral shapes of other crops. It should be noted that the April 4, 1974 curve for rye appeared upon investigation to be probably tainted by an imperfection in the experimental procedure---possibly an instrumental gain change of as much as 1.5:1. Even correcting for this possible mishap does however not modify the general relationships.

Figure D-8 plots the temporal progression of the mean reflectance of spring wheat, pasture, corn, oats, alfalfa and barley in the spectral band $0.76-0.9 \mu \mathrm{~m}$ for Hand County, South Dakota. It shows that temporal variations in mean reflectance differ from crop to crop.
$\downarrow$

REFLECTRNCE OF WIUTER WHEAT AT DIFFERENT MATURITY STAGES

LOCATION: HAND. COUNTY, SDUTH DAKDTR SENSORI FSS DATE: 1975-76


## REFLECTANCE OF SPRING WHEAT AT DIFFERENT MRTURITY STAGES

LOCATION, HAND COUNTY, SOUTH OAKOTR
SENSDR: FSS DRTE, 1976


FIGURE D-5





## FIGURE D-7




## FIGURE D-8

temporal progression of the mean reflectance for the crops contained IN THE HAND COUNTY DATA SET UNADJUSTED DATA



It can be argued at this point that the findings thus far exemplified are peculiar to the limited number of regions within which they have been gathered: and that the hypothesis of "similarity" of spectral shapes is thereby not proven, but rather only inferrable as a working hypothesis.

There is of course no positive answer to this argument, whose thorough experimental verification would require an impracticable number of field data gathering programs. Heuristic arguments which point to the fact that the hypothesis of "similarity" is valid worldwide are:

1. Personal communication by Dr. N.G. Kharif, Director, Remote Sensing Institute, Academy of Sciences of the Uzbekhistan Republic, USSR. Dr. Karin confirmed in 1976 that from his findings in the USSR, spectra of trees and crops appear "very similar." His tabulations in [25] further confirm this fact.
2. Spectra of rice gathered in hothouse environment by the FrenchItalian cooperative program "Agreste" show not only that various species of rice present "similar" reflectance spectra, but that these are essentially "similar" to the available spectra of other U.S. crops [26].

The mean reflectances of crops display fluctuations. Figure D-9 shows the :fluctuations of mean reflectances measured among five spring wheat fields on July 28, 1976 in the Williams County, North Dakota LACIE Supersite. It also plots the results of 5 spectral scans of spring wheat field 334 located within this site: it shows that fluctuations occur not only among fields but within single fields. The Figures show that such fluctuations occur in all regions of the spectrum from 0.4 - $2.4 \mu \mathrm{~m}$.

FIGURE D－9

## VARIABILITY IN REFLEこTA゙はE WITHIN A SPRING WHEFT F：ELD

LOCATION：WILLIAMS COUNTY，NORTH DAKOTA SENSOR：FSS DATE：JULY 28． 1976

FIELD： 334

VARIABILITY IN FEFLECTANCE AMONG SPRING WHERT FIELUS

LOCATION：WILLIRMS COUNTY．NGRTH OAKOTA SENSOR：FSS

EATEE：MRY 28． 1976



$$
\mathrm{D}-15
$$

Figura D-10 plots coefficients of variation as a function of spectral wavelength for wheat in Bushland, Texas. It, and several other similar tests, indicates that an average spectral variability of order $10 \%$ is typical for reflectance fluctuations within a single field. Tables D-4 through D-6 list coefficients of variation for various multi-field crop classes for six dates in Hand County, South Dakota. They indicate that multi-field coefficients of vartation are generally greater than $10 \%$. The maximum multi-field reflectance fluctuation is exhibited by oats with a coefficient of variation of approximately $40 \%$ on June 16,1977 in the spectral band from 2.08 to $2.35 \mu$. Typical coefficients of variation for multi-field crop classes appear to fall in the range from $10 \%$ to $30 \%$.

## COEFFICIENT OF VARIATION VERSUS WAVELENGTH

BUSHLAND, TEXAS - MARCH 16, 1974

## SINGLE Wheat field



## TABLE D-4

COEFFICIENTS OF VARIATION OF REFLECTANCE VERSUS BAND AND DATE: HAND COUNTY, SID.


## TABLE D-5

COEFFICIENTS OF VARIATION OF REFLECTANCE VERSUS BAND AND DATE: HAND COUNTY, S.D.

| SPECTRAL |  |  | CORN |  |  |  |  |  | OATS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BAND | 4/21 | 5/10 | 6/01 | 6/16 | 7/07 | 7/27 | 4/21 | 5/10 | 6/01 | 6/16 | 7/07 | 7/27 |
| 0.450-0.520 | 15.5 | 20.1 | 8.6 | 9.7 | 5.2 | 13.9 | 13.4 | 9.3 | 18.8 | 29.1 | 31.4 | 11.6 |
| 0.520-0.600 | 16.6 | 18.7 | 8.1 | 10.4 | 5.0 | 8.7 | 14.8 | 8.1 | 15.9 | 29.3 | 21.0 | 9.0 |
| 0.630-0.680 | 15.1 | 18.0 | 8.4 | 10.6 | 6.0 | 9.5 | 13.6 | 7.7 | 14.8 | 31.8 | 17.5 | 10.9 |
| 0.760-0.900 | 12.9 | 23.5 | 8.4 | 7.0 | 1.8 | 1.8 | 10.3 | 5.6 | 16.3 | 31.1 | 17.2 | 12.2 |
| 1.550-1.750 | 6.8 | 14.0 | 6.8 | 6.3 | 4.1 | 16.0 | 3.9 | 4.1 | 12.6 | 37.0 | 24.1 | 5.2 |
| 2.080-2.350 | 9.0 | 23.3 | 8.6 | 8.3 | 6.0 | 25.8 | 5.1 | 4.0 | 23.6 | 40.0 | 41.9 | 12.0 |
|  | AVERAGE OF 3 FIELDS, 15 TO 64 SPECTRA TAKEN AT EACH DATE |  |  |  |  |  | AVERAGES OF 2 FIELDS, 57 TO 77 SPECTRA TAKEN AT EACH FIELD |  |  |  |  |  |

TAKEN AT EACH DATE

## TABLE D-6

COEFFICIENTS OF VARIATION OF REFLECTANCE VERSUS BAND DATE: HAND COUNTY, S.D.

| SPECTRAL |  |  | ALFALF |  |  |  |  |  | PAST | CV\% |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BAND | 4/21 | 5/10 | $6 ; 01$ | 6/16 | 7/07 | 7/27 | 4/21 | 5/10 | 6/01 | 6/16 | 7/07 | 7/27 |
| 0.450-0.520 | 8.5 | 24.6 | 7.4 | 28.4 | 5.3 | 16.4 | 15.3 | 15.2 | 17.7 | 20.8 | 15.0 | 13.4 |
| 0.520-0.600 | 10.8 | 16.3 | 15.7 | 27.0 | 4.8 | 13.4 | 12.3 | 11.7 | 11.5 | 15.6 | 11.3 | 10.1 |
| 0.630-0.680 | 9.1 | 14.6 | 5.3 | 29.3 | 5.3 | 12.4 | 11.1 | 11.0 | 10.6 | 15.1 | 10.5 | 9.7 |
| 0.760-0.900 | 20.6 | 17.5 | 6.4 | 48.2 | 2.7 | 4.1 | 11.5 | 9.2 | 12.7 | 21.8 | 9.7 | 9.3 |
| 1.550-1.750 | 4.5 | 15.9 | 2.3 | 38.7 | 3.7 | 12.9 | 13.3 | 10.2 | 14.1 | 18.7 | 10.1 | 10.1 |
| 2.080-2.350 | 8.3. | 36.8 | 3.7 | 50.7 | 5.7 | 19.5 | 15.0 | 16.1 | 24.1 | 26.8 | 15.7 | 14.9 |
|  | AVERAGES OF 3 FIELDS, 26 TO 53 SPECTRA TAKEN AT EACH DATE |  |  |  |  |  | AVERAGES OF 4 FIELDS, 76 TO 142 SPECTRA TAKEN AT EACH DATE |  |  |  |  |  |

## APPENDIX E

## INFORMATION EXTRACTION FROM RADIOMETRIC DATA

## DISCRIMINATION THEORY

There is a distinction between identification and discrimination. Discrimination means separation among species, i.e. their grouping into distinct classes, plus the assignment of a numerical value to each class: in our case, the total ground surface occupied by that class. The function of identification requires in addition the "naming" of each class, 1.e. its assignment to predetermined categories.

The function of discrimination requires the sufficiently accurate recognition of distinctions between classes: ifentification requires in addition the identification of specific characteristics which univocally tag each distinct class as pertaining to a preassigned set.

The treatment which follows address:s the function of discrimination only, specifically: 1) the identification of the drivers of accuracy; and 2) the statement of their interrelationships.

## Single Band - Binary Mixture Case

Consider an area containing $N$ total pixels of two crop species: $N_{A}$ of spectes $A$ and $N_{B}$ of species $B$. The reflectances of species $A, B$ are characterized. by Gaussian distributions with mean reflectances $\mu_{A}$, $\mu_{B}$ and standard deviations $\sigma_{A}, \sigma_{B}$

The proportion of the area containing species A is:

$$
\alpha=N_{A} / N
$$

That containing species $B$ is:

$$
(1-\alpha)=N_{B} / N
$$

The probability density function $p(x)$ of the distribution of the binary crop mixture is:

$$
\begin{equation*}
p(x)=\alpha P_{A}(x)+(1-\alpha) P_{B}(x) \tag{E-1}
\end{equation*}
$$

where $P_{A}$ is the conditional probability of $x$ belonging to Class $A$ and $P_{B}$ is the conditional probability of $x$ belonging to Class $B$, and $\alpha$ is the a priori probability of n belonging to Class A.

The expected mean reflectance $\mu_{\alpha}$ of the $N$ pixels is given by:


$$
\begin{align*}
& =\int_{-\infty}^{\infty} x\left[\alpha P_{A}(x)+(I-\alpha) P_{B}(x)\right] d x= \\
& =\alpha \mu_{A}+(1-\alpha) \mu_{B} \tag{E-2}
\end{align*}
$$

and the expected variance by:

$$
\begin{align*}
\sigma_{\alpha}^{2} & =\int_{-\infty}^{\infty} x^{2} p(x) d x= \\
& =\int_{-\infty}^{\infty} x^{2}\left[\alpha P_{A}(x)+(1-\alpha) P_{B}(x)\right] d x= \\
& =\alpha \sigma_{A}^{2}+(1-\alpha) \sigma_{B}^{2}+\alpha(1-\alpha)\left(\mu_{B}-\mu_{A}\right)^{2} \tag{E-3}
\end{align*}
$$

For sufficiently large samples the sample mean $M$ tends to a normal variable with mean $\mu_{\alpha}$ and standard deviation $\sigma_{\alpha} / \sqrt{N}$. Using the standard definition of the $q$ \% probabilist; that the true value is contained in an interval

$$
M-k\left(\frac{\sigma_{\alpha}}{\sqrt{N}}\right)<\mu_{\alpha}<M+k\left(\frac{\sigma_{\alpha}}{\sqrt{N}}\right)
$$

where $t$ is a constant whose values are given below:

| CONFIDENCE <br> LEVEL <br> q\% | LEVEL OF <br> SIGNIFICANCE <br> $(100-\mathrm{q}) \%$ |  |
| :---: | :---: | :---: |
| 90 | 10 | k |
| 95 | 5 | 1.64 |
| 99 | 1 | 1.96 |
| 99.9 | 0.1 | 2.58 |
| 99.99 | 0.01 | 3.29 |
|  |  | 3.89 |

For species $A$ with $\tilde{\mu}_{A}$ as the estimate of the mean value for species $A$, the true value ${ }^{\mu} A$ lies between the limits

$$
\begin{equation*}
\tilde{H}_{A}-\frac{k \sigma_{A}}{\sqrt{N_{A}}}<\mu_{A} \ll \tilde{H}_{A}+\frac{k \sigma_{A}}{\sqrt{N_{A}}} \tag{E-4}
\end{equation*}
$$

at the conifdence level q. Similarly for species B:

$$
\begin{equation*}
\tilde{\mu}_{B}-\frac{k \sigma_{B}}{\sqrt{N_{B}}}<\mu_{B}<\tilde{\mu}_{B}+\frac{k \sigma_{B}}{\sqrt{N_{B}}} \tag{E-5}
\end{equation*}
$$

Adding the two equations and weighting them by their a priori proportions, yields:

$$
\begin{align*}
& \alpha \tilde{u}_{A}+(1-\alpha) \tilde{u}_{B}-k\left[\alpha \frac{\sigma_{A}}{\sqrt{N_{A}}}+(1-\alpha) \frac{\sigma_{B}}{\sqrt{N_{B}}}\right]<\alpha \mu_{A}+(1-\alpha) \mu_{B}< \\
& \quad<\alpha \tilde{\mu}_{A}+(1-\alpha) \tilde{\mu}_{B}+k\left[\alpha \frac{\sigma_{A}}{\sqrt{N_{A}}}+(1-\alpha) \frac{\sigma_{B}}{\sqrt{N_{B}}}\right] \tag{E-6}
\end{align*}
$$

## Rewriting the equation:

$$
\begin{align*}
& M-k\left[\alpha \frac{\sigma_{A}}{\sqrt{N_{A}}}+\frac{(1-\alpha) \sigma_{B}}{\sqrt{N_{B}}}\right]<\alpha\left(\mu_{A}-\mu_{B}\right)+\mu_{B}< \\
& <M+k\left[\alpha \frac{\sigma_{A}}{\sqrt{N_{A}}}+\frac{(1-\alpha) \sigma_{B}}{\sqrt{N_{B}}}\right] \tag{E-7}
\end{align*}
$$

E-5

## Where:

$$
M=\alpha \tilde{\mu}_{A}+(1-\alpha) \tilde{u}_{B}
$$

Introducing the definitions below in (E-7):

$$
a=\frac{\mu_{B}-\mu_{A}}{\sigma_{A}}
$$

$$
\mathrm{b}=\frac{\sigma_{\mathrm{B}}}{\sigma_{\mathrm{A}}}
$$

$$
\tilde{a}=\frac{\mu_{B}-M}{a \sigma_{A}}
$$

yields:

$$
\begin{gather*}
\tilde{\alpha}-\frac{k}{a \sqrt{N}}[\sqrt{\alpha}+b \sqrt{1-\alpha}]<\alpha \\
\leqslant \tilde{\alpha}+\frac{k}{a \sqrt{N}}[\sqrt{\alpha}+b \sqrt{1-\alpha} \tag{E-8}
\end{gather*}
$$

Thus the absolute value of the error e of the estimate of $\alpha$ is bounded by:

$$
\begin{align*}
e & <\frac{k}{a \sqrt{N}}[\sqrt{\alpha}+b \quad \sqrt{1-\alpha}]= \\
& =\frac{1}{\alpha \sqrt{N}} \frac{k}{\mu_{A}-\mu_{B}} \sqrt{\alpha \sigma_{A}^{2}+(1-\alpha) \sigma_{B}^{2}} \tag{E-9}
\end{align*}
$$

1. The iratical Utilization of Remote Sensing Technology for the Management and Conscrvation of Natural Resources, Part 1: Crop Forecasting, P. Castruccio \& H. Loats, Jr., United Nations. PO \#5-20-255, March 1974.
2. Assessment of the World Food Situation - Present and Future, United Nations World Food Conference, Rome 5-16 November 1974.
3. Agricultural Statistics 1976 \& Agricultural Statistics 1977, U.S. Department of Agriculture.
4. The State of Food and Agriculture 1976, Food and Agricuiture Organization of the United Nations, Rome, 1975.
5. Letter by Willam Kibler, Administration, STS, dated February 19, 1976.
6. Personal Commuications from Mr. E. Mercati, Director, Agricultural Section, IstiutoCentrale di Statistica, Rome, Italy.
7. Canada Year Book, 1975, 1971 Census of Canada - Agriculture Canada, Agriculture - Nova Scotia, Agriculture - New Brunswick, Agricusture Prince Edward Island, \& Agriculture - Newfoundland.
8. Global Crop Production Forecasting An, Analysis of the Data System Problems and Solutions, Final Report, Contract NAS8-32491, May 1978, Report Number 781 HV 301 General Electric Company.
9. Global Agricultural Statistics in Support of Sigma Squared. P. Castruccio H. Loats, T. Fowler, \& A. Baumann, January 6, 1977 ECOsystems Int'l. Inc: -
10. U.S. Weekly Crop and Weather Bulletin 1977.
11. Time Study Final Report: Volume I - Results of Temporal Investigations 20 October 1978 (Draft) Contract Nc. NAS5-23412, Mod 149 General Electric Company and ECOsystems International.
12. Agricultural Comnodities ~ Projections for 1975 and 1985, Volume I, Part I, Part II, Part III.

Agricultural Commodfties - Projections for 1975-1986, Volume II Methodological Notes, Statistical Appendix.
13. National Methods of Collecting Agricultural Statistics, Volume I: Asia andrthe Far East, European and North American Regions
$\because$
Volume II: African, Latin American and Near East Regions.
14. Personal Commications from Mr. Dale Rowe, GE Missile \& Space Division, Huntsville Operations, Huntsville, Alabama
15. Ungar GISS Report Spectra
16. The ERTS-1 Investigation (ER-600) Volume I - ERTS Agricultural Analysis, R. Bryan Erb. NASA, August 1974.
17. Reflectance of Vegetation, Soil and Water, Craig L. Wiegand et al., Agricultural Research Service, USDA, November 1974.
18. Evaluation and Comparison of ERTS Measurements of Major Crops and Soil Associations for Selected Test Sites in the Central United States, Marion F. Bamgardner and Staff, LARS, Purdue University, Maxch 1974.
19. A Study of the Utilization of ERTS-1 Data from the Wabash River Basin, David A. Landgrebe and Staff, LaRS, Purdue University August 1974.
20. Identification and Quantification of Agriculture Crops, Determination of Dynamics of Land Use and Agricultural Census, Eng. Humberto, C. Garuti, Secretaria De Agricultura Y Ganaderia, Argentina, February 1974.
21. Remote Sensing in Iowa Agriculture: Identification and Classification of Iowa's Cropis, Soils, and Forestry Resources Using ERTS-1 and Complimentary Underflight Imagery, J.P. Mahlstede et al., Iowa State Univeristy, May 1974.
22. EOS Thematic Mapper Technical Review, Ralph Shay et al., April 30May 2, 1975.
23. Regional Agricultural Surveys Using ERTS-Data, Gene A. Thorley et al. Center for Remote Sensing Research, University of California, UN 640.
24. Distanzionnie Metodi Jzuchenia Rastitelnosti, N.G. Kharin, Academy - of Sciences of the USSR and the Turkmenistan Republic, Moscow, 1975.
25. Agreste Program Part 2: Italian Test Sites Progress Report, Mar. Jun 1976 (Commission of the European Communities)

