12 research outputs found

    Autonomous management of cost, performance, and resource uncertainty for migration of applications to infrastructure-as-a-service (IaaS) clouds

    Get PDF
    2014 Fall.Includes bibliographical references.Infrastructure-as-a-Service (IaaS) clouds abstract physical hardware to provide computing resources on demand as a software service. This abstraction leads to the simplistic view that computing resources are homogeneous and infinite scaling potential exists to easily resolve all performance challenges. Adoption of cloud computing, in practice however, presents many resource management challenges forcing practitioners to balance cost and performance tradeoffs to successfully migrate applications. These challenges can be broken down into three primary concerns that involve determining what, where, and when infrastructure should be provisioned. In this dissertation we address these challenges including: (1) performance variance from resource heterogeneity, virtualization overhead, and the plethora of vaguely defined resource types; (2) virtual machine (VM) placement, component composition, service isolation, provisioning variation, and resource contention for multitenancy; and (3) dynamic scaling and resource elasticity to alleviate performance bottlenecks. These resource management challenges are addressed through the development and evaluation of autonomous algorithms and methodologies that result in demonstrably better performance and lower monetary costs for application deployments to both public and private IaaS clouds. This dissertation makes three primary contributions to advance cloud infrastructure management for application hosting. First, it includes design of resource utilization models based on step-wise multiple linear regression and artificial neural networks that support prediction of better performing component compositions. The total number of possible compositions is governed by Bell's Number that results in a combinatorially explosive search space. Second, it includes algorithms to improve VM placements to mitigate resource heterogeneity and contention using a load-aware VM placement scheduler, and autonomous detection of under-performing VMs to spur replacement. Third, it describes a workload cost prediction methodology that harnesses regression models and heuristics to support determination of infrastructure alternatives that reduce hosting costs. Our methodology achieves infrastructure predictions with an average mean absolute error of only 0.3125 VMs for multiple workloads

    The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

    Get PDF
    Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure to better support scientific modeling computational demands. Providing scientific modeling as-a-service requires dynamic scaling of server infrastructure to adapt to changing user workloads. This paper presents the Virtual Machine (VM) Scaler, an autonomic resource manager for IaaS Clouds. We have developed VM-Scaler, a REST/JSON-based web services application which supports infrastructure provisioning and management to support scientific modeling for the Cloud Services Innovation Platform (CSIP) [Lloyd et al. 2012]. VM-Scaler harnesses the Amazon Elastic Compute Cloud (EC2) application programming interface to support model- service scalability, cloud management, and infrastructure configuration for supporting modeling workloads. VM-Scaler provides cloud control while abstracting the underlying IaaS cloud from the end user. VM-Scaler is extensible to support any EC2 compatible cloud and currently supports the Amazon public cloud and Eucalyptus private clouds versions 3.1 and 3.3. VM-Scaler provides a platform to improve scientific model deployment by supporting experimentation with: hot spot detection schemes, VM management and placement approaches, and model job scheduling/proxy services

    The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

    Get PDF
    Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure to better support scientific modeling computational demands. Providing scientific modeling as-a-service requires dynamic scaling of server infrastructure to adapt to changing user workloads. This paper presents the Virtual Machine (VM) Scaler, an autonomic resource manager for IaaS Clouds. We have developed VM-Scaler, a REST/JSON-based web services application which supports infrastructure provisioning and management to support scientific modeling for the Cloud Services Innovation Platform (CSIP) [Lloyd et al. 2012]. VM-Scaler harnesses the Amazon Elastic Compute Cloud (EC2) application programming interface to support model- service scalability, cloud management, and infrastructure configuration for supporting modeling workloads. VM-Scaler provides cloud control while abstracting the underlying IaaS cloud from the end user. VM-Scaler is extensible to support any EC2 compatible cloud and currently supports the Amazon public cloud and Eucalyptus private clouds versions 3.1 and 3.3. VM-Scaler provides a platform to improve scientific model deployment by supporting experimentation with: hot spot detection schemes, VM management and placement approaches, and model job scheduling/proxy services

    Data Provisioning for the Object Modeling System (OMS)

    Get PDF
    The Object Modelling System (OMS) platform supports initiatives to build or re - factor agro - environmental models and deploy them in different business contexts as model services on cloud computing platforms. Whether traditional desktop, client - server, or emerging cloud deployments, success especially at the enterprise level relies on stable and efficient data provisioning to the models. In this paper we describe recent experience and trends with tools and services to supply data for model inputs. Solutions range from simple pre - processing tools to data services deployed to cloud platforms. Also, systematic, sustained data stewardship and alignment with standards organizations impart stability to data provisioning efforts

    Environmental Modeling Framework Invasiveness: Analysis and Implications

    Get PDF
    Environmental modeling frameworks support scientific model development by providing an Application Programming Interface (API) which model developers use to implement models. This paper presents results of an investigation on the framework invasiveness of environmental modeling frameworks. Invasiveness is defined as the quantity of dependencies between model code and the modeling framework. This research investigates relationships between invasiveness and the quality of modeling code. Additionally, we investigate the relationship between invasiveness and two common framework designs (lightweight vs. heavyweight). Five metrics to measure framework invasiveness were proposed and applied to measure invasiveness between model and framework code of several implementations of Thornthwaite and the Precipitation-Runoff Modeling System (PRMS), two hydrological models. Framework invasiveness measurements were compared with existing software metrics including size (lines of code), cyclomatic complexity, and object-oriented coupling with generally positive correlations being found. We found that models with lower framework invasiveness tended to be smaller, less complex, and have lower coupling. In addition, the lightweight framework implementations of the Thornthwaite and PRMS models were less invasive than the heavyweight framework model implementations. Our initial results suggest that framework invasiveness is undesirable for model code quality and that lightweight frameworks may help reduce invasiveness

    The status of the world's land and marine mammals: diversity, threat, and knowledge

    Get PDF
    Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action

    Mobility Analysis Workflow (MAW): An Accessible, Interoperable, and Reproducible Container System for Processing Raw Mobile Data

    Get PDF
    Mobility analysis, or understanding and modeling of people's mobility patterns in terms of when, where, and how people move from one place to another, is fundamentally important as such information is the basis for large-scale investment decisions on the nation's multi-modal transportation infrastructure. Recent rise of using passively generated mobile data from mobile devices have raised questions on using such data for capturing the mobility patterns of a population because: 1) there is a great variety of different kinds of mobile data and their respective properties are unknown; and 2) data pre-processing and analysis methods are often not explicitly reported. The high stakes involved with mobility analysis and issues associated with the passively generated mobile data call for mobility analysis (including data, methods and results) to be accessible to all, interoperable across different computing systems, reproducible and reusable by others. In this study, a container system named Mobility Analysis Workflow (MAW) that integrates data, methods and results, is developed. Built upon the containerization technology, MAW allows its users to easily create, configure, modify, execute and share their methods and results in the form of Docker containers. Tools for operationalizing MAW are also developed and made publicly available on GitHub. One use case of MAW is the comparative analysis for the impacts of different pre-processing and mobility analysis methods on inferred mobility patterns. This study finds that different pre-processing and analysis methods do have impacts on the resulting mobility patterns. The creation of MAW and a better understanding of the relationship between data, methods and resulting mobility patterns as facilitated by MAW represent an important first step toward promoting reproducibility and reusability in mobility analysis with passively-generated data

    The status of the world's land and marine mammals: Diversity, threat, and knowledge

    Get PDF
    Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action
    corecore