62 research outputs found

    A Sociocybernetics Data Analysis Using Causality in Tourism Networks

    Get PDF
    The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future

    Coverage and invariability in fuzzy systems

    Get PDF
    This paper presents a new complex system systemic. Here, we are working in a fuzzy environment, so we have to adapt all the previous concepts and results that were obtained in a non-fuzzy environment, for this fuzzy case. The direct and indirect influences between variables will provide the basis for obtaining fuzzy and/or non-fuzzy relationships, so that the concepts of coverage and invariability between sets of variables will appear naturally. These two concepts and their interconnections will be analyzed from the viewpoint of algebraic properties of inclusion, union and intersection (fuzzy and non-fuzzy), and also for the loop concept, which, as we shall see, will be of special importance

    Invariability, orbits and fuzzy attractors

    Get PDF
    In this paper, we present a generalization of a new systemic approach to abstract fuzzy systems. Using a fuzzy relations structure will retain the information provided by degrees of membership. In addition, to better suit the situation to be modelled, it is advisable to use T-norm or T-conorm distinct from the minimum and maximum, respectively. This gain in generality is due to the completeness of the work on a higher level of abstraction. You cannot always reproduce the results obtained previously, and also sometimes different definitions with different views are obtained. In any case this approach proves to be much more effective when modelling reality

    Saint Mathew Law and Bonini Paradox in Textual Theory of Complex Models

    Get PDF
    The mathematical models of the complex reality are texts belonging to a certain literature that is written in a semi-formal language, denominated L(MT) by the authors whose laws linguistic mathematics have been previously defined. This text possesses linguistic entropy that is the reflection of the physical entropy of the processes of real world that said text describes. Through the temperature of information defined by Mandelbrot, the authors begin a text-reality thermodynamic theory that drives to the existence of information attractors, or highly structured point, settling down a heterogeneity of the space text, the same one that of ontologic space, completing the well-known law of Saint Mathew, of the General Theory of Systems and formulated by Margalef saying: “To the one that has more he will be given, and to the one that doesn't have he will even be removed it little that it possesses

    Behaviours, Processes and Probabilistic Environmental Functions in H-Open Systems

    Get PDF
    The Patten’s Theory of the Environment, supposes an impotent contribution to the Theoretical Ecology. The hypothesis of the duality of environments, the creaon and genon functions and the three developed propositions are so much of great importance in the field of the Applied Mathematical as Ecology. The authors have undertaken an amplification and revision of this theory, developing the following steps: 1) A theory of processes. 2) A definition of structural and behavioural functions. 3) A probabilistic definition of the environmental functions. In this paper the authors develop the theory of behavioural functions, begin the theory of environmental functions and give a complementary focus to the theory of processes that has been developed in precedent papers

    Introduction to Coding Theory for Flow Equations of Complex Systems Models

    Get PDF
    The modeling of complex dynamic systems depends on the solution of a differential equations system. Some problems appear because we do not know the mathematical expressions of the said equations. Enough numerical data of the system variables are known. The authors, think that it is very important to establish a code between the different languages to let them codify and decodify information. Coding permits us to reduce the study of some objects to others. Mathematical expressions are used to model certain variables of the system are complex, so it is convenient to define an alphabet code determining the correspondence between these equations and words in the alphabet. In this paper the authors begin with the introduction to the coding and decoding of complex structural systems modeling

    Mythical systems: mathematic and logical theory

    Get PDF
    The process of elaboration of the symbolic universe leads to exciting insights regarding the search for human emotional security. The symbols end up as explanatory axes of universal reality and on them are constructed myths that form a superstructure for belief systems. Human society is a multi-level system with a material structure (society), an ideological superstructure (belief systems, values, etc.) and a super superstructure with two parts: mythical (origin and justification) and utopic (final goal). All mythical belief systems have a numinous-religious nature

    Syntactic and Semantic Relationships in Models of Complex Systems: An Ecological Case

    Get PDF
    In this paper, the authors extend and generalize the methodology based on the dynamics of systems with the use of differential equations as equations of state, allowing that first order transformed functions not only apply to the primitive or original variables, but also doing so to more complex expressions derived from them, and extending the rules that determine the generation of transformed superior to zero order (variable or primitive). Also, it is demonstrated that for all models of complex reality, there exists a complex model from the syntactic and semantic point of view. The theory is exemplified with a concrete model: MARIOLA model

    Coverage and invariance for the biological control of pests in mediterranean greenhouses

    Get PDF
    A major problem related to the treatment of ecosystems is that they have no available mathematical formalization. This implies that many of their properties are not presented as short, rigorous modalities, but rather as long expressions which, from a biological standpoint, totally capture the significance of the property, but which have the disadvantage of not being sufficiently manageable, from a mathematical standpoint. The interpretation of ecosystems through networks allows us to employ the concepts of coverage and invariance alongside other related concepts. The latter will allow us to present the two most important relations in an ecosystem – predator–prey and competition – in a different way. Biological control, defined as “the use of living organisms, their resources or their products to prevent or reduce loss or damage caused by pests”, is now considered the environmentally safest and most economically advantageous method of pest control (van Lenteren, 2011). A guild includes all those organisms that share a common food resource (Polis et al., 1989), which in the context of biological control means all the natural enemies of a given pest. There are several types of intraguild interactions, but the one that has received most research attention is intraguild predation, which occurs when two organisms share the same prey while at the same time participating in some kind of trophic interaction. However, this is not the only intraguild relationship possible, and studies are now being conducted on others, such as oviposition deterrence. In this article, we apply the developed concepts of structural functions, coverage, invariant sets, etc. (Lloret et al., 1998, Esteve and Lloret, 2006a, Esteve and Lloret, 2006b and Esteve and Lloret, 2007) to a tritrophic system that includes aphids, one of the most damaging pests and a current bottleneck for the success of biological control in Mediterranean greenhouses

    Diversity for Texts Builds in Language L(MT) II: Indexes Based in Abundances

    Get PDF
    One saw previously that indications of diversity IT and the one of Shannon permits to characterize globally by only one number one fundamental aspects of the text structure. However a more precise knowledge of this structure requires specific abundance distributions and the use, to represent this one, of a suitable mathematical model. Among the numerous models that would be either susceptible to be proposed, the only one that present a real convenient interest are simplest. One will limit itself to study applied three of it to the language L(MT): the log-linear, the log-normal and Mac Arthur's models very used for the calculation of the diversity of the species of ecosystems, and used, we believe that for the first time, in the calculation of the diversity of a text written in a certain language, in our case L(MT). One will show advantages and inconveniences of each of these model types, methods permitting to adjust them to text data and in short tests that permit to decide if this adjustment is acceptable
    corecore