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Abstract This paper presents a new complex system systemic. Here, we are working in a fuzzy environment, 
so we have to adapt all the previous concepts and results that were obtained in a non-fuzzy environment, for 
this fuzzy case. The direct and indirect influences between variables will provide the basis for obtaining fuzzy 
and/or non-fuzzy relationships, so that the concepts of coverage and invariability between sets of variables will 
appear naturally. These two concepts and their interconnections will be analyzed from the viewpoint of 
algebraic properties of inclusion, union and intersection (fuzzy and non-fuzzy), and also for the loop concept, 
which, as we shall see, will be of special importance. 
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1. Introduction 
In many complex problems arising in the fields of engineering, medical science, economics, 
social sciences, etc. involving uncertainties, exact methods have recently been found to be 
inadequate. Many theories have been proposed for dealing with uncertainties efficiently,  
such as Zadeh’s fuzzy sets theory (1965), Atanassov’s intuitionistic fuzzy sets theory 
(1986), and Pawlak’s rough fuzzy sets theory (1982). In 1999, Molodtsov (1999) introduced 
the concept of the soft set which is a new approach for modeling uncertainties. In 2013, 
Gunduz (Aras) and Bayramov introduced important properties of fuzzy soft topological 
spaces. 
 
When studying complex problems, developing plans, managing organizations and in other 
kinds of human endeavor, it is often essential to synthesize hierarchies. Based on fuzzy sets 
theory, Tazaki and Amagasa (1979) propose a method for structuring hierarchy for the 
various problems in managing organizations, i.e. Fuzzy Structural Modeling (FSM). This 
method describes a formal procedure for constructing the graphic presentation of the 
hierarchical arrangement, given the necessary information concerning the relation of each 
element to every other element. Hierarchy is fundamental to many fields of science, 
engineering and human situations. Raghuvanshi and Kumar (1999) present a generalized 
fuzzy structural modeling (GFSM) allowing the inclusions of cycles of any order. 
 
Since people often decide on their behavior without a definite sense of their motives, fuzzy 
theory should be an effective tool for assisting people in making decisions. Fuzzy theory 
should be an effective tool to develop a system to provide psychological support for human 
decision-making. Yamashita (1997) proposes a support system which is composed of a 
combination of the fuzzy reasoning model and fuzzy structural modeling (FSM). 
 
Multicriteria fuzzy decision-making problems (Chen and Tan 1994; Hong and Choi 2000) 
have been proposed based on the vague set theory. Liu and Wang (2007) proposed 
multicriteria decision-making methods based on Atanassov’s (1986) intuitionistic fuzzy sets, 
Ye (2010) proposed a fuzzy decision-making method based on the weighted correlation 
coefficient in an intuitionistic fuzzy environment by means of entropy weights. Recently, Ye 
(2012) established measures based on the Hamming and Euclidean distances between 
intuitionistic trapezoidal fuzzy numbers to solve the multicriteria group decision-making 
problem. 
 
The evaluation process of a location selection problem involves a multiplicity of complex 
considerations and poses a multi-criteria decision-making (MCDM) situation. Moreover, 
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some evaluation criteria faced ambiguous and uncertain nature. Ding and Chou (2013) 
develop a fuzzy (MCDM) model to evaluate the best selection of transshipment ports for 
container carriers. 
 
When constructing a probability distribution from incomplete and imprecise data, the effects 
of the quantity and the quality of the data are of serious concern in practical applications. 
Kikuchi and Kronprasert (2012) present an approach to building a complete probability 
distribution from an incomplete probability distribution, when some of the given 
probabilities are only approximately known. 
 
Several approaches to the idea of fuzzy graph have been introduced in the literature on fuzzy 
systems. Graph theory has many applications for problems in systems analysis, operations 
research, economics and transportation, but some aspects of a graph-theoretic problem may 
be uncertain in many situations. Blue et al. (2002) present a taxonomy of fuzzy graphs, 
providing a catalog of the various types of “fuzziness” of possible graphs. 
 
Fuzzy logic has developed into an extensive subject. Zadeh (1999) addresses the 
terminology, and stresses that fuzzy graphs are a generalization of the calculi of crisp 
graphs. Other formulations of fuzzy graph problems have appeared in the literature; Kóczy 
(1992) also gives a taxonomy of fuzzy graphs. 
 
In this paper, we present a new systemic approach to complex systems, extending the results 
obtained in previous works (Esteve and Lloret 2006a,b), by using a fuzzy set theory. The 
direct and indirect influences between variables will provide the basis for obtaining fuzzy 
and/or non-fuzzy relationships, so that the concepts of coverage and invariability between 
sets of variables will appear naturally, these concepts and their interconnections will be 
analyzed from the viewpoint of algebraic properties of inclusion, union and intersection, as 
well as for the loop concept, which as we shall see, will be especially important. In our 
work, we use some important concepts of the fuzzy system, including membership function, 
inclusion, intersection, union, support and fuzzy relation. 
  

2. Fuzzy influences 
When any two elements are related, we know that one of them exercises, directly, a certain 
influence on the other. Taking this into account, we obtain the following definitions and 
results, bearing in mind the fact that the relations will always be fuzzy from now on since 
we can always consider a classic relation as a particular case of a fuzzy one. 

 
Definition 1. In a complex system S=(M, R), if two elements a,b∈M verify that∃ r∈R, 
µr(a,b)=p>0 for any fuzzy relation, we say that a directly influences b with grade p through 
the fuzzy relation r. 
 
From now on, we need to bear in mind the fact that the chains of relations that will exist 
between any two elements of M may contain classic or fuzzy relations of the types 
mentioned here in indiscriminate fashion, as well as containing elements that could belong 
to fuzzy sets or not. 
Clearly, all the degrees of influence we are going to consider will strictly be greater than 
zero. If not, we would have superfluous influences, so we eliminate them and simplify the 
chain of relations. 
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With these premises, only considering the degree of influence and not how it is produced, 
we will now formalize the concept of indirect influence, first presenting the concept of the 
chain of relations, something that will be of great use:  
 
Definition 2. Let S=(M,R) be a complex system. We shall say that a set of variables {x1, …, 
xn} form a chain of relations if there is a set of relations (fuzzy or not)  {r1, …, rn-1}∈R such 
that {x1r1x2, x2r2x3, …, xn-1rn-1xn}. 

      From the above we obtain: 
 

Definition 3. In a complex system S=(M,R), we say that the element a∈M indirectly 
influences the element b∈M with grade p, if there is a chain, starting with a and ending with 
b, that contains relations of R and elements of M, and verifying that the minimum degree of 
indirect influence obtained with this chain is equal to p.  
 
Of all the chains of relations, special importance is attributed, due to the role it plays in the 
systemic analysis of any complex system, to what we know as the loop: 

 
Definition 4. In a complex system S=(M,R) we say that a set n

iix 1}{ = ⊆M is a grade p loop for 
the relations (fuzzy or not)  r1, r2,…,rn ∈R if we verify that:  

µr1(x1,x2)=p1>0,  µr2(x2,x3)=p2>0,…..,  µrn(xn,x1)=pn>0  y p=min(p1, p2,…,pn). 
In the trivial case, a set {x}⊆M is a grade p single loop for the fuzzy relation r∈R if 
µr(x,x)=p>0. Meaning that x has a direct influence on itself with grade p. 

       From the definition of the loop we obtain another of greater importance: 
 

Definition 5. In a complex system S=(M,R) we say that the structure of the system is 
hierarchical if no subset of M is a loop.  
When we focus on a specific variable, its behavior is immediately defined formally as 
follows: 
 
Definition 6. In a complex system S=(M,R) we define the relations structure of each 
variable x∈M as fM(x)={y∈M / ∃r∈R, µr(x,y)>0}. 

 
Definition 7. In a complex system S=(M,R) we define the relations structure of the variable 
x∈M associated with the fuzzy relation r∈R as fM(x,r)={y∈M / µr(x,y)>0}. 

 
If we were interested in a set of variables, the previous definitions would be as follows: 
 
Definition 8. In a complex system S=(M,R) we define the relations structure of any set  
X⊆M  by 



Xx
MM xfXf

∈

= )()( . 

 
Definition 9. In a complex system S=(M,R) we define the relations structure of any set X⊆M 
and associated with the fuzzy relation  r∈R by 



Xx
MM rxfrXf

∈

= ),(),( . 

 
       From the above we can deduce the following result: 
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       Proposition 1. In a complex system S=(M,R), for each X⊆M we verify that      


Rr
MM rXfXf

∈

= ),()( . 

 
       Proof.  

     

Rr Rr Xx Xx Rr Xx
MMMMM XfxfrxfrxfrXf

∈ ∈ ∈ ∈ ∈ ∈

==== )()()),(()),((),( . 

 
       3. Coverage 

One of the first properties to appear when studying systemic approach of complex systems is 
coverage (Esteve and Lloret, 2006a,b). This property is fundamental when studying the 
direct relations existing between all the subsets of M. It also provides criteria for 
determining the existence of loops. We now offer an example to illustrate adaptation to a 
fuzzy environment and an initial result of interest: 
 
Definition 10. Let S=(M,R) be a complex system and let A,B⊆M. We say that A covers B if 
fM (A)=B. In other words, if each element of B is directly influenced by any element of A. 
 
For  the   case   where   the   sets   A   and   B   are   fuzzy,   the   above   definition   becomes 
 fM (supp(A))=supp(B), as for any variable a∈A whose membership function is 0, we obtain  
µr(a,b)≤min(µA(a),µB(b))=min(0,µB(b))=0, so that µr(a,b)=0, and a will not be effectively 
related to any other variable. 

       However, if set A is fuzzy and B is non-fuzzy, the definition of coverage becomes: 
       fM (supp(A))=B. 
       We now present a practical example to clarify the above concept: 

 
Example 1. Let the complex system S=(M,R) defined on the set of individuals 

{ }1 2 3 4 5 6 7, , , , , ,M x x x x x x x= . 
Let the fuzzy set B=”Individual that may suffer from ischemic cardiopathy” with supp(B)= 
{ }1 4 7, ,x x x= , with the degrees of membership being µB( 1x )=0,8; µB( 4x )=0,7; µB( 7x )=0,9. 

In addition, let the following risk factors associated with illness: 
A1=”Suffers from high blood pressure” 
A2=”Has a high BMI (body mass index)” 
A3=”Heavy smoker” 
A4=”Sedentary lifestyle” 
A5=”Suffers from dyslipemia” 

We construct a fuzzy set A that integrates all these risk factors, weighting the degree of 
membership of each of the sets according to the impact of the risk factor. 

      We thus obtain the following degrees of membership: 
Supp(A)={ }1 2 3 4 5 6 7, , , , , ,x x x x x x x where µA( 1x )=0.8; µA( 2x )=0.7;  µA( 3x )=0.9;  µA( 4x )=0.5;   
µA( 5x )=0.1;  µA( 6x )=0.4; µA( 7x )=0.9.   

       We construct the fuzzy relation r as follows: r={(a,b)/ a,b∈M,  µr(a,b)=min(µA(a),µB(b)}. 
In this case, fM(supp(A))=supp(B), meaning that the fuzzy set A covers fuzzy set B, meaning 
that the fuzzy set made up of the individuals associated with risk factors for ischemic 
cardiopathy covers the set of individuals that really suffer from it.  

 
Proposition 2.  Let S=(M,R) be a complex system  and let the fuzzy sets be A, B, C M⊆ . If 
A covers B and B covers C, then each element of supp(C) is indirectly influenced by an 
element of supp(A). 
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Proof. Let c∈supp(C). As B covers C, we obtain ∃b∈supp(B) ∃∧ r∈R, so that µr(b,c)>0. 
Similarly, as b∈supp(B) and A covers B, we obtain ∃a∈supp(A) ∃∧ r∈R, so that 
µr(a,b)>0.As µr(a,b)>0 ∧ µr (b,c)>0, we therefore deduce that a exercises an indirect 
influence on c. 

        Reasoning in the same way about each element of supp(C) demonstrates the proof. 
 

Note 1. The result we have just proven is also valid for combinations of the three sets A, B 
and C that are not necessarily fuzzy sets, for example taking A and C as fuzzy sets and B as a 
non-fuzzy set. 

 
Using the property of coverage, the possible existence of loops is determined in the 
following result: 
 
Proposition 3. Let S=(M,R) be a complex system, let the fuzzy sets be A,B⊆M, where 
supp(A) is a finite set, so that supp(A)⊆supp(B). Thus, if A covers B, a loop will be included 
in supp(A). 
 
Proof. We know that supp(A)⊆supp(B)=fM(supp(A)), as A covers B. Let n=card(supp(A)), 
and let xn+1 be any finite element of supp(A). Thus, xn+1∈ fM(supp(A)), so that ∃xn∈supp(A) 
and ∃rn∈R, so that 

nrµ (xn,xn+1)>0. In addition, as xn∈fM(supp(A)),  ∃xn-1∈supp(A) and  ∃rn-

1∈R, so that 
1−nrµ (xn-1,xn)>0. 

 
After n iterations, we obtain a chain of relations {x1,x2,…..,xn,xn+1} and, as the cardinal of 
supp(A) is n, we obtain ∃i,j∈{1,2,…,n+1}, i<j, so that xi=xj and therefore the set {xi,…..,xj} 
forms a loop contained in supp(A). 

 
Note 2. The above property is also valid if one of the sets is fuzzy and the other is not. 

 
If we combine the two definitions of inclusion described above, we obtain the following 
result: 
 
Proposition 4. Let there be two fuzzy sets A,B M⊆ , verifying that A⊆B  (taking into 
account fuzzy inclusion). Thus, supp(A)⊆supp(B) (now taking into account ordinary 
inclusion).  
 
Proof. As A⊆B, then µA(x)≤µB(x) ∀x∈M. In addition, if x∈supp(A), we know that µA(x)>0 
and thus, µB(x)≥µA(x)>0, so obtaining x∈supp(B).   
 

        4. Invariability 
This property plays a vital role in studying the evolution of the system in the long term. In 
previous articles (Esteve and Lloret, 2006a,b) we proved that the abundance of invariable 
subsets of M can guarantee system behavior with little predisposition to change, and 
therefore free of upsets. We will now adapt the definition of the invariable subset to our 
fuzzy environment. 

 
Definition 11. Let S=(M,R) be a complex system and A M⊆ a fuzzy set. We say that 
supp(A) is invariable if fM(supp(A))⊆supp(A). 
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        Note 3. If A is and ordinary set, A is invariable if fM(A)⊆A. 

 
Example 2. Let S=(M,R) be a complex system where M is a set of cells making up a tissue 
and let r∈R by the cellular mitosis relation defined by: 
r={(x,y)∈MxM / µr(x,y)∈[0,1]} where µr(x,y)>0 if the cell y descends from cell x by means 
of mitosis and µr(x,y)=1 if there were no anomalies in the mitosis process. 
We now consider the fuzzy set A associated with the histological tumor grade of each cell 
A=〈x, µA(x)〉, where µA(x) is the histological tumor grade of cell x. In particular, µA(x)=0 if 
cell x is normal. 
The support of fuzzy set A is an example of invariability, as the tumor cells are going to 
appear through mitosis to cells that are also going to have a certain non-null histological 
tumor grade. 
The invariable set condition is not applicable to all its subsets, as can be seen in previously 
published articles (Esteve and Lloret, 2006a,b). However, there is one very interesting case 
where this does occur: 

 
Proposition 5. Let S=(M,R) be a complex system and let the fuzzy set A M⊆ be such that 
supp(A) is invariable. Thus, fM(supp(A)) is also invariable.  
 
Proof. Let a∈fM(fM(supp(A)). Thus, ∃c∈fM(supp(A)) / a∈fM(c). As supp(A) is invariable, we 
obtain c∈supp(A), and also a∈fM(supp(A)), which proves that  fM(supp(A)) is invariable. 

 
Note 4. The above result can also be extended to fM(fM(supp(A))), and in this way 
indefinitely to fM(fM(…(…(fM(supp(A)))...)…)). 

 
Proposition 6.  Let S=(M,R) be a complex system and let the fuzzy sets be A,B M⊆ , whose 
supports are both invariable. Thus, supp(A)∪supp(B) for the ordinary union is invariable. 
 
Proof.  Let a∈supp(A)∪supp(B), thus a∈supp(A)  or  a∈supp(B). If a∈supp(A), as supp(A) 
is invariable, we obtain fM(supp(A))⊆supp(A), and thus fM(a)⊆ supp(A)∪supp(B). For 
a∈supp(B), the same reasoning is applied and we complete the demonstration. 

 
Proposition 7. The fuzzy and ordinary unions and the support satisfy supp(A)∪supp(B)= 
supp(A∪B). 
   
Proof. As x∈ supp(A)∪supp(B) ⇔ x∈ supp(A)  or  x∈ supp(B) ⇔ µA(x)>0 or µB(x)>0 ⇔ 
max(µA(x),µB(x))>0 ⇔ x∈ supp(A∪B). 
 
Proposition 8. Let S=(M,R) be a complex system and let the fuzzy sets be A,B, M⊆ , both 
with invariable supports. Thus, supp(A∪B) is invariable. 
 

       Proof.  Deduced from the two previous propositions. 
 
The same result is obtained with the intersection of two invariable sets and we will now 
show this. 
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Proposition 9. Let S=(M,R) be a complex system and let the fuzzy sets be A,B M⊆ , both 
with invariable supports. Thus, if supp(A)∩supp(B)≠∅, we see that supp(A)∩supp(B) is 
invariable for the ordinary intersection. 
 
Proof. Let x∈supp(A)∩supp(B). As x∈supp(A) y supp(A) is invariable,  fM(x)⊆supp(A). In 
the same way, with x∈supp(B) we obtain fM(x)⊆supp(B). 
Thus, fM(x)⊆supp(A)∩supp(B), giving fM(supp(A)∩supp(B))⊆ supp(A)∩supp(B), and thus 
supp(A)∩supp(B) will be invariable. 

 
Proposition 10. The ordinary and fuzzy intersections and the support satisfy 
supp(A)∩supp(B)= supp(A∩B). 
 
Proof. As x∈ supp(A)∩supp(B) ⇔ x∈ supp(A)  and  x∈ supp(B) ⇔ µA(x)>0 and µB(x)>0 ⇔ 
min(µA(x),µB(x))>0 ⇔ x∈ supp(A∩B). 
 
Proposition 11.  Let S=(M,R) be a complex system and let the fuzzy sets be A,B M⊆ , both 
with invariable support. Thus, if supp(A∩B)≠∅, supp(A∩B) is invariable. 

        
       Proof. Deduced from the last two propositions. 

 
       5. Relations between coverage and invariability 

 
We now present a series of results, from different points of view, which prove the relation 
existing between the concepts of coverage and invariability. 

 
Proposition 12. Let S=(M,R) be a complex system and let the fuzzy sets be A,B M⊆ , both 
with support invariable. Thus, if A covers B, supp(A)∪supp(B) will be invariable. 
 
Proof. Let x∈supp(A)∪supp(B), thus x∈supp(A) or x∈supp(B). If x∈supp(A), as A covers B, 
then fM(x)⊆supp(B)⊆supp(A)∪supp(B). In addition, if x∈supp(B), as this is an invariable set, 
we get fM(x)⊆supp(B)⊆ supp(A)∪supp(B). All this proves that supp(A)∪supp(B) is 
invariable. 

 
Corollary 1. Under the same conditions as the previous Proposition, we have 
supp(A)∪supp(B) covering supp(B). 
 

       Proof.  Trivial, applying properties.  
 

Proposition 13. Let S=(M,R) be a complex system and let the fuzzy sets be A,B M⊆ , so that 
A covers B. Thus, supp(A)  will be invariable ⇔ supp(B)⊆supp(A).           
 
Proof. (⇒ ) Let x∈supp(B). As A covers B we obtain ∃y∈supp(A), so that x∈fM(y). In 
addition, as supp(A) is invariable, x∈fM(y)⊆supp(A). In other words, supp(B)⊆supp(A).  
(⇐ ) Let x∈supp(A); as A covers B we obtain fM(x)⊆supp(B)⊆supp(A). Thus, fM(supp(A)⊆ 
supp(A) and supp(A) will be invariable. 

 
        One obvious result of the previous Proposition is shown below.  
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Corollary 2.  Let S=(M,R) be a complex system and let the fuzzy set be A M⊆ , so that A 
covers itself. Thus, supp(A) is invariable. 
 

       Proof.  Trivial, replacing A with B in the previous Proposition.  
 

       We will now examine a known result under different premises. 
 
Proposition 14.  Let S=(M,R) be a complex system and let the fuzzy sets be A,B M⊆ , so 
that A covers B and B covers A. Thus, supp(A)∪supp(B) is invariable. 
 
Proof. Let x∈supp(A)∪supp(B), thus x∈supp(A) or x∈supp(B). If x∈supp(A), we obtain 
fM(x)⊆supp(B)⊆supp(A)∪supp(B). In addition, if x∈supp(B), we obtain 
fM(x)⊆supp(A)⊆supp(A)∪supp(B). 
Thus, ∀x∈supp(A)∪supp(B) verifies that fM(x)⊆supp(A)∪supp(B), giving 
fM(supp(A)∪supp(B))⊆supp(A)∪supp(B), and therefore supp(A)∪supp(B) will be invariable. 

 
       We obtain a similar but more enlarged result with the following corollary. 

 
Corollary 3. Let S=(M,R) be a complex system and let the fuzzy sets be A0, A1,….,An⊆M, so 
that nAA =0  and Ai cover 1,,1,01 −=∀+ niAi  . Thus, 

supp(A0)∪supp(A1)∪……∪supp(An-1) is invariable. 
 
Proof. Trivial, applying the known properties and using the same reasoning as in the 
previous Proposition.  

 
We finish with an important result that shows the fundamental relation between the loops 
and any invariable set. 
 
Proposition 15.  Let S=(M,R) a fuzzy complex system and let A,L M⊆  be fuzzy sets, so that 
supp(A) is invariable and supp(L) is a loop. Thus, it can only be that supp(L)⊆supp(A)  or 
that supp(A)  and supp(L) are disjointed. 
 
Proof.  Let x∈supp(L). We can find that x∈supp(A) or x∉supp(A). Firstly, suppose that 
x∈supp(A). As supp(A) is invariable, we will have fM(x)⊆ supp(A). In other words, the 
element following x in the loop will also belong to supp(A). Using the same reasoning, the 
following element will also belong to supp(A) and successively until we reach our element 
x.All elements in the loop therefore belong to supp(A) and we obtain that supp(L)⊆supp(A). 
Now suppose that x∉supp(A). In this case, if the element following x in the loop is an 
element of supp(A), then the successive elements in the loop (note that as it is a loop, we are 
talking about all its elements) will also belong to supp(A) and, as supp(A) is invariable, our 
element x will also do so, thus contradicting our initial supposition. 

       So, if x∈supp(L), we have x∉supp(A), in other words, both sets will be disjointed.  
 

       6. Conclusion  
The concepts of coverage and invariability from a discrete and fuzzy point of view are 
adaptations of the definitions made by the authors (Alseda et. al. 2000; Block and Coppel, 
1992) for the case of continuous systems. 
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These concepts are only obtained with an iteration of the associated relation structures, thus 
focusing on the direct or immediate influences between the different elements making up the 
complex system. 
These elements are defined separately and analyzing all possibilities according to whether 
the sets in question are fuzzy or not, underlining their implications with the loop concept and 
seeing what results are obtained. The concept of coverage has revealed properties between 
sets like neighboring relations between them. As regards invariability, the results have 
shown little or no predisposition to disorder in the complex systems containing invariable 
fuzzy sets.  
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