20 research outputs found

    Circulating non-coding RNAs in biomarker-guided cardiovascular therapy : A novel tool for personalized medicine?

    Get PDF
    Current clinical guidelines emphasize the unmet need for technological innovations to guide physician decision-making and to transit from conventional care to personalized cardiovascular medicine. Biomarker-guided cardiovascular therapy represents an interesting approach to inform tailored treatment selection and monitor ongoing efficacy. However, results from previous publications cast some doubts about the clinical applicability of biomarkers to direct individualized treatment. In recent years, the non-coding human transcriptome has emerged as a new opportunity for the development of novel therapeutic strategies and biomarker discovery. Non-coding RNA (ncRNA) signatures may provide an accurate molecular fingerprint of patient phenotypes and capture levels of information that could complement traditional markers and established clinical variables. Importantly, ncRNAs have been identified in body fluids and their concentrations change with physiology and pathology, thus representing promising non-invasive biomarkers. Previous publications highlight the translational applicability of circulating ncRNAs for diagnosis and prognostic stratification within cardiology. Numerous independent studies have also evaluated the potential of the circulating non-coding transcriptome to predict and monitor response to cardiovascular treatment. However, this field has not been reviewed in detail. Here, we discuss the state-of-the-art research into circulating ncRNAs, specifically microRNAs and long non-coding RNAs, to support clinical decision-making in cardiovascular therapy. Furthermore, we summarize current methodological and conceptual limitations and propose future steps for their incorporation into personalized cardiology. Despite the lack of robust population-based studies and technical barriers, circulating ncRNAs emerge as a promising tool for biomarker-guided therapy

    Annexin A6 modulates TBC1D15/Rab7/StARD3 axis to control endosomal cholesterol export in NPC1 cells

    Get PDF
    Cholesterol accumulation in late endosomes is a prevailing phenotype of Niemann-Pick type C1 (NPC1) mutant cells. Likewise, annexin A6 (AnxA6) overexpression induces a phenotype reminiscent of NPC1 mutant cells. Here, we demonstrate that this cellular cholesterol imbalance is due to AnxA6 promoting Rab7 inactivation via TBC1D15, a Rab7-GAP. In NPC1 mutant cells, AnxA6 depletion and eventual Rab7 activation was associated with peripheral distribution and increased mobility of late endosomes. This was accompanied by an enhanced lipid accumulation in lipid droplets in an acyl-CoA:cholesterol acyltransferase (ACAT)-dependent manner. Moreover, in AnxA6-deficient NPC1 mutant cells, Rab7-mediated rescue of late endosome-cholesterol export required the StAR-related lipid transfer domain-3 (StARD3) protein. Electron microscopy revealed a significant increase of membrane contact sites (MCS) between late endosomes and ER in NPC1 mutant cells lacking AnxA6, suggesting late endosome-cholesterol transfer to the ER via Rab7 and StARD3-dependent MCS formation. This study identifies AnxA6 as a novel gatekeeper that controls cellular distribution of late endosome-cholesterol via regulation of a Rab7-GAP and MCS formation

    Liver CPT1A gene therapy reduces diet-induced hepatic steatosis in mice and highlights potential lipid biomarkers for human NAFLD

    Get PDF
    The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased drastically due to the global obesity pandemic but at present there are no approved therapies. Here, we aimed to revert high-fat diet (HFD)-induced obesity and NAFLD in mice by enhancing liver fatty acid oxidation (FAO). Moreover, we searched for potential new lipid biomarkers for monitoring liver steatosis in humans. We used adeno-associated virus (AAV) to deliver a permanently active mutant form of human carnitine palmitoyltransferase 1A (hCPT1AM), the key enzyme in FAO, in the liver of a mouse model of HFD-induced obesity and NAFLD. Expression of hCPT1AM enhanced hepatic FAO and autophagy, reduced liver steatosis, and improved glucose homeostasis. Lipidomic analysis in mice and humans before and after therapeutic interventions, such as hepatic AAV9-hCPT1AM administration and RYGB surgery, respectively, led to the identification of specific triacylglyceride (TAG) specie (C50:1) as a potential biomarker to monitor NAFFLD disease. To sum up, here we show for the first time that liver hCPT1AM gene therapy in a mouse model of established obesity, diabetes, and NAFLD can reduce HFD-induced derangements. Moreover, our study highlights TAG (C50:1) as a potential noninvasive biomarker that might be useful to monitor NAFLD in mice and humans

    Biophysical and lipidomic biomarkers of cardiac remodeling post-myocardial infarction in humans

    Get PDF
    Few studies have analyzed the potential of biophysical parameters as markers of cardiac remodeling post-myocardial infarction (MI), particularly in human hearts. Fourier transform infrared spectroscopy (FTIR) illustrates the overall changes in proteins, nucleic acids and lipids in a single signature. The aim of this work was to define the FTIR and lipidomic pattern for human left ventricular remodeling post-MI. A total of nine explanted hearts from ischemic cardiomyopathy patients were collected. Samples from the right ventricle (RV), left ventricle (LV) and infarcted left ventricle (LV INF) were subjected to biophysical (FTIR and differential scanning calorimetry, DSC) and lipidomic (liquid chromatography–high-resolution mass spectrometry, LC–HRMS) studies. FTIR evidenced deep alterations in the myofibers, extracellular matrix proteins, and the hydric response of the LV INF compared to the RV or LV from the same subject. The lipid and esterified lipid FTIR bands were enhanced in LV INF, and both lipid indicators were tightly and positively correlated with remodeling markers such as collagen, lactate, polysaccharides, and glycogen in these samples. Lipidomic analysis revealed an increase in several species of sphingomyelin (SM), hexosylceramide (HexCer), and cholesteryl esters combined with a decrease in glycerophospholipids in the infarcted tissue. Our results validate FTIR indicators and several species of lipids as useful markers of left ventricular remodeling post-MI in humans

    Alterations of specific biomarkers of metabolic pathways in vascular tree from patients with Type 2 diabetes

    Get PDF
    AbstractThe aims of this study were to check whether different biomarkers of inflammatory, apoptotic, immunological or lipid pathways had altered their expression in the occluded popliteal artery (OPA) compared with the internal mammary artery (IMA) and femoral vein (FV) and to examine whether glycemic control influenced the expression of these genes. The study included 20 patients with advanced atherosclerosis and type 2 diabetes mellitus, 15 of whom had peripheral arterial occlusive disease (PAOD), from whom samples of OPA and FV were collected. PAOD patients were classified based on their HbA1c as well (HbA1c ≤ 6.5) or poorly (HbA1c > 6.5) controlled patients. Controls for arteries without atherosclerosis comprised 5 IMA from patients with ischemic cardiomyopathy (ICM). mRNA, protein expression and histological studies were analyzed in IMA, OPA and FV. After analyzing 46 genes, OPA showed higher expression levels than IMA or FV for genes involved in thrombosis (F3), apoptosis (MMP2, MMP9, TIMP1 and TIM3), lipid metabolism (LRP1 and NDUFA), immune response (TLR2) and monocytes adhesion (CD83). Remarkably, MMP-9 expression was lower in OPA from well-controlled patients. In FV from diabetic patients with HbA1c ≤6.5, gene expression levels of BCL2, CDKN1A, COX2, NDUFA and SREBP2 were higher than in FV from those with HbA1c >6.5.The atherosclerotic process in OPA from diabetic patients was associated with high expression levels of inflammatory, lipid metabolism and apoptotic biomarkers. The degree of glycemic control was associated with gene expression markers of apoptosis, lipid metabolism and antioxidants in FV. However, the effect of glycemic control on pro-atherosclerotic gene expression was very low in arteries with established atherosclerosis.This study was undertaken with finance from FIS “Centros de Investigación En Red” (CIBER, CB06/03/0018) and REDINSCOR RD06/0003/0015 from Instituto de Salud Carlos III, Madrid, Spain.Peer Reviewe

    Increased sLRP1 and decreased atrial natriuretic peptide plasma levels in newly diagnosed T2DM patients are normalized after optimization of glycemic control

    Get PDF
    Low-density lipoprotein receptor-related protein 1 (LRP1) negatively modulates circulating atrial natriuretic peptide (ANP) levels. Both molecules are involved in the regulation of cardiometabolism. To evaluate soluble LRP1 (sLRP1) and ANP levels in people with newly diagnosed type 2 diabetes mellitus (T2DM) and determine the effects of metabolic optimization. This single-center longitudinal observational study recruited patients with newly diagnosed T2DM (n = 29, HbA1c > 8.5%), and 12 healthy control, age- and sex-matched volunteers. sLRP1 and ANP levels were measured by immunoassays at T2DM onset and at one year after optimization of glycemic control (HbA1c ≤ 6.5%). T2DM had higher sLRP1 levels than the control group (p = 0.014) and lower ANP levels (p =0.002). At 12 months, 23 T2DM patients reached the target of HbA1c ≤ 6.5%. These patients significantly reduced sLRP1 and increased ANP levels. Patients who did not achieve HbA1c < 6.5% failed to normalize sLRP1 and ANP levels. There was an inverse correlation in the changes in sLRP1 and ANP (p = 0.031). The extent of sLRP1 changes over 12 months of metabolic control positively correlated with those of total cholesterol, LDL cholesterol, TG, TG/HDLc, and apolipoprotein B. Newly diagnosed T2DM patients have an increased sLRP1/ANP ratio, and increased sLRP1 and decreased ANP levels are normalized in the T2DM patients that reached an strict glycemic and metabolic control. sLRP1/ANP ratio could be a reliable marker of cardiometabolic function

    Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake

    Get PDF
    <div><p>Human hepatic lipase (hHL) is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL) is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT). In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism <i>in vivo</i>. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and <i>de novo</i> lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL)-mediated free fatty acid (FFA) lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and <i>de novo</i> lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of <i>Srebf1</i> as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating <i>de novo</i> lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.</p></div

    HL transgenic mice exhibit more adiposity and upregulated adipose LPL-mediated FFA influx.

    No full text
    <p>(A) Fat pad mass weights after the 16-week feeding experiment in hHL transgenic and WT mice. Each value represents the mean ± SEM of data from 6 WT mice and 8 hHL transgenic mice. (B) Quantitation of adipocyte size (N = 3 mice/group). Representative photomicrographs of H&E stained sections from eWAT of WT (C) and hHL transgenic mice (D). (E) Transcriptional expression of eWAT <i>Lpl</i> and tissue activity (N = 5 mice/group). (F) [<sup>3</sup>H]-triglyceride labeled triglyceride-rich lipoproteins were injected intravenously into WT and hHL transgenic mice under postprandial conditions and radiolabeled FFA and triglycerides were measured in WAT fat pads. Radiolabeled triglycerides + FFA in the collected fat depots did not differ between genotypes (0.92 ± 0.05 vs 0.80 ± 0.16% of the injected dose in WT and hHL transgenic mice, respectively). [<sup>3</sup>H]FFA/triglyceride ratios are shown (N = 3 mice/group). * indicates p <0.05 vs WT mice.</p
    corecore