36 research outputs found
Operational Considerations of Passing Zones for Two-lane Highways: Spanish Case Study
[EN] The U.S. Highway Capacity Manual (HCM 2010) methodology is used in Spain to evaluate traffic operation and quality of service. In two-lane undivided highways, the effect of limiting where drivers could pass slower vehicles, or passing restrictions, is considered through the percentage of no-passing zones. This measure does not account for how passing opportunities are distributed along the road. The objective of this research was to evaluate the effect percentage of no-passing zones and average passing zone length on two-lane, and incorporate them in the analysis methodology, if significant.
The TWOPAS microsimulation program was calibrated and validated to the Spanish conditions. Passing restrictions had little effect on average traffic speed (ATS), with differences lower than 6 km/h between a segment of road with no passing restrictions and a segment of a road with 100% of length with passing restriction. Conversely, passing restrictions can increase percent time spent following (PTSF) up to 30%. Increasing the passing zone length beyond 2,000 m does not improve PTSF. The new models could be used to better estimate traffic operation on Spanish two-lane highways.The research was funded by the Spanish Ministry of Economy and Competitiveness [TRA2013-42578-P], and has been partially developed as a result of a mobility stay at the University of Florida funded by the Spanish Ministry of Economy and Competitiveness [EEBB-I-15-09970]. The research was completed with the support of the FPI Research and Teaching Fellowship of the Spanish Ministry of Economy and Competitiveness [BES-2011-044612] and the TUM University Foundation Fellowship (TUFF) for international postdocs. We would like to thank Dr. Lemke from the Bundesanstalt fur Strassenwesen (Federal Highway Research Institute) for providing the final report of the research project FE 16.0015/2009 (23). This work was supported by the German Research Foundation (DFG) and the Technical University of Munich (TUM) in the framework of the Open Access Publishing Program.Moreno Chou, AT.; Llorca Garcia, C.; Washburn, S.; Bessa Jr., JE.; García García, A. (2018). Operational Considerations of Passing Zones for Two-lane Highways: Spanish Case Study. PROMET - Traffic&Transportation. 30(5):601-612. https://doi.org/10.7307/ptt.v30i5.2776S60161230
Modelling vehicles acceleration during overtaking manoeuvres
[EN] Abstract: Overtaking manoeuvre is a key issue for two-lane rural roads. These roads should provide sufficient overtaking sight distance (OSD) at certain locations to allow faster vehicles to pass slower ones. However, overtaking requires occupying the opposing lane, which represents a serious safety concern. Severity of overtaking related crashes is very
high, compared with other manoeuvres. The development of advanced driver assistance systems (ADAS) for overtaking is being a complex task. Only few systems have been developed, but are not still in use. This research incorporated accurate data of real manoeuvres to improve the knowledge of the phenomenon. The trajectory of the overtaking vehicles on the left lane was observed. An instrumented vehicle measured the overtaking time and distance, the abreast position, and the initial and final speed of 180 drivers that passed it during a field experiment. Six different kinematic models (such as uniform acceleration or linear variation of acceleration) were calibrated. Generally, drivers started to accelerate before changing to the opposing lane. These models may be applied to ADAS, to estimate OSD and to improve microsimulation models.Part of this research was included in the project 'Desarrollo de modelos de distancias de visibilidad de adelantamiento', with reference code TRA2010-21736 and subsidised by the Spanish Ministery of Economy and Competitivity. The authors also thank Prof Dr Sayed, from University of British Columbia, for his valuable review.Llorca Garcia, C.; Moreno, AT.; García García, A. (2016). Modelling vehicles acceleration during overtaking manoeuvres. IET Intelligent Transport Systems. 10(3):206-215. https://doi.org/10.1049/iet-its.2015.0035S206215103Gray, R., & Regan, D. M. (2005). Perceptual Processes Used by Drivers During Overtaking in a Driving Simulator. Human Factors: The Journal of the Human Factors and Ergonomics Society, 47(2), 394-417. doi:10.1518/0018720054679443Basilio, N., Morice, A. H. P., Marti, G., & Montagne, G. (2015). High- and Low-Order Overtaking-Ability Affordances. Human Factors: The Journal of the Human Factors and Ergonomics Society, 57(5), 879-894. doi:10.1177/0018720815583581Morice, A. H. P., Diaz, G. J., Fajen, B. R., Basilio, N., & Montagne, G. (2015). An Affordance-Based Approach to Visually Guided Overtaking. Ecological Psychology, 27(1), 1-25. doi:10.1080/10407413.2015.991641Farah, H., Bekhor, S., & Polus, A. (2009). Risk evaluation by modeling of passing behavior on two-lane rural highways. Accident Analysis & Prevention, 41(4), 887-894. doi:10.1016/j.aap.2009.05.006Hassan, Y., Easa, S. M., & El Halim, A. O. A. (1996). Passing sight distance on two-lane highways: Review and revision. Transportation Research Part A: Policy and Practice, 30(6), 453-467. doi:10.1016/0965-8564(95)00032-1Wang, Y., & Cartmell, M. P. (1998). New Model for Passing Sight Distance on Two-Lane Highways. Journal of Transportation Engineering, 124(6), 536-545. doi:10.1061/(asce)0733-947x(1998)124:6(536)Sparks, G. A., Neudorf, R. D., Robinson, J. B. L., & Good, D. (1993). Effect of Vehicle Length on Passing Operations. Journal of Transportation Engineering, 119(2), 272-283. doi:10.1061/(asce)0733-947x(1993)119:2(272)Hanley, P. F., & Forkenbrock, D. J. (2005). Safety of passing longer combination vehicles on two-lane highways. Transportation Research Part A: Policy and Practice, 39(1), 1-15. doi:10.1016/j.tra.2004.09.001Khoury, J. E., & Hobeika, A. G. (2012). Integrated Stochastic Approach for Risk and Service Estimation: Passing Sight Distance Application. Journal of Transportation Engineering, 138(5), 571-579. doi:10.1061/(asce)te.1943-5436.0000366Jenkins, J. M., & Rilett, L. R. (2004). Application of Distributed Traffic Simulation for Passing Behavior Study. Transportation Research Record: Journal of the Transportation Research Board, 1899(1), 11-18. doi:10.3141/1899-02Rakha, H., Ahn, K., & Trani, A. (2004). Development of VT-Micro model for estimating hot stabilized light duty vehicle and truck emissions. Transportation Research Part D: Transport and Environment, 9(1), 49-74. doi:10.1016/s1361-9209(03)00054-3Polus, A., Livneh, M., & Frischer, B. (2000). Evaluation of the Passing Process on Two-Lane Rural Highways. Transportation Research Record: Journal of the Transportation Research Board, 1701(1), 53-60. doi:10.3141/1701-07Harwood, D. W., Gilmore, D. K., & Richard, K. R. (2010). Criteria for Passing Sight Distance for Roadway Design and Marking. Transportation Research Record: Journal of the Transportation Research Board, 2195(1), 36-46. doi:10.3141/2195-05Hegeman, G., Tapani, A., & Hoogendoorn, S. (2009). Overtaking assistant assessment using traffic simulation. Transportation Research Part C: Emerging Technologies, 17(6), 617-630. doi:10.1016/j.trc.2009.04.010Milanés, V., Llorca, D. F., Villagrá, J., Pérez, J., Fernández, C., Parra, I., … Sotelo, M. A. (2012). Intelligent automatic overtaking system using vision for vehicle detection. Expert Systems with Applications, 39(3), 3362-3373. doi:10.1016/j.eswa.2011.09.024Isermann, R., Mannale, R., & Schmitt, K. (2012). Collision-avoidance systems PRORETA: Situation analysis and intervention control. Control Engineering Practice, 20(11), 1236-1246. doi:10.1016/j.conengprac.2012.06.003Petrov, P., & Nashashibi, F. (2014). Modeling and Nonlinear Adaptive Control for Autonomous Vehicle Overtaking. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1643-1656. doi:10.1109/tits.2014.2303995Llorca, C., & García, A. (2011). Evaluation of Passing Process on Two-Lane Rural Highways in Spain with New Methodology Based on Video Data. Transportation Research Record: Journal of the Transportation Research Board, 2262(1), 42-51. doi:10.3141/2262-05Llorca, C., Moreno, A. T., García, A., & Pérez-Zuriaga, A. M. (2013). Daytime and Nighttime Passing Maneuvers on a Two-Lane Rural Road in Spain. Transportation Research Record: Journal of the Transportation Research Board, 2358(1), 3-11. doi:10.3141/2358-01Llorca, C., Moreno, A. T., Pérez-Zuriaga, A. M., & García, A. (2013). Influence of age, gender and delay on overtaking dynamics. IET Intelligent Transport Systems, 7(2), 174-181. doi:10.1049/iet-its.2012.0147Khoury, J. E., & Hobeika, A. (2007). Incorporating Uncertainty into the Estimation of the Passing Sight Distance Requirements. Computer-Aided Civil and Infrastructure Engineering, 22(5), 347-357. doi:10.1111/j.1467-8667.2007.00491.xRakha, H., Snare, M., & Dion, F. (2004). Vehicle Dynamics Model for Estimating Maximum Light-Duty Vehicle Acceleration Levels. Transportation Research Record: Journal of the Transportation Research Board, 1883(1), 40-49. doi:10.3141/1883-05Fitzpatrick, K., Chrysler, S. T., & Brewer, M. (2012). Deceleration Lengths for Exit Terminals. Journal of Transportation Engineering, 138(6), 768-775. doi:10.1061/(asce)te.1943-5436.000038
Influence of highway 3D coordination on drivers' perception of horizontal curvature and available sight distance
"This paper is a preprint of a paper submitted to [journal] and is subject to Institution of Engineering and Technology Copyright. If accepted, the copy of record will be available at IET Digital Library"Drivers' road perception is an important human factor of comfort and safety on driving. Available sight distance of crest vertical curves superimposed on horizontal curves can be geometrically optimised by applying 3D coordination criteria. However, drivers might not perceive available sight distance improvements. Two approaches were used to investigate the effect of geometrical optimised design on perceived sharpness and visibility of isolated crest vertical curves overlapped with horizontal curves. A survey-based approach was used to evaluate subjective perception of 100 drivers. Three-dimensional renderings were displayed to subjects; who were asked to rank the curves by sharpness and sight distance. Moreover, 50 of those drivers previously participated on a driving simulation experiment involving the same curves, so objective driving data were collected too. Drivers' survey results indicate that driver's curve perception depends on the algebraic difference of grades while coordination of vertical and horizontal curves does not appear to affect this perception. On the other hand, the operating speeds on different curves were not statistically different from each other. Surprisingly, the operating speeds on a flat curve tended to be lower than on the vertical crest curves superimposed on the same horizontal curve. Likely causes are discussed in the paper.Moreno Chou, AT.; García García, A.; Camacho Torregrosa, FJ.; Llorca Garcia, C. (2013). Influence of highway 3D coordination on drivers' perception of horizontal curvature and available sight distance. IET Intelligent Transport Systems. 7(2):244-250. doi:10.1049/iet-its.2012.0146S24425072Hassan, Y., & Easa, S. M. (2000). Modeling of Required Preview Sight Distance. Journal of Transportation Engineering, 126(1), 13-20. doi:10.1061/(asce)0733-947x(2000)126:1(13)García, A. (2004). Discussion of «Optimal Vertical Alignment Analysis for Highway Design» by T. F. Fwa, W. T. Chan, and Y. P. Sim. Journal of Transportation Engineering, 130(1), 138-138. doi:10.1061/(asce)0733-947x(2004)130:1(138)Bidulka, S., Sayed, T., & Hassan, Y. (2002). Influence of Vertical Alignment on Horizontal Curve Perception: Phase I: Examining the Hypothesis. Transportation Research Record: Journal of the Transportation Research Board, 1796(1), 12-23. doi:10.3141/1796-02Hassan, Y., Sayed, T., & Bidulka, S. (2002). Influence of Vertical Alignment on Horizontal Curve Perception: Phase II: Modeling Perceived Radius. Transportation Research Record: Journal of the Transportation Research Board, 1796(1), 24-34. doi:10.3141/1796-03Hasan, M., Sayed, T., & Hassan, Y. (2005). Influence of vertical alignment on horizontal curve perception: effect of spirals and position of vertical curve. Canadian Journal of Civil Engineering, 32(1), 204-212. doi:10.1139/l04-090Wang, F., & Easa, S. M. (2009). Validation of Perspective-View Concept for Estimating Road Horizontal Curvature. Journal of Transportation Engineering, 135(2), 74-80. doi:10.1061/(asce)0733-947x(2009)135:2(74)Bella, F. (2007). Parameters for Evaluation of Speed Differential. Transportation Research Record: Journal of the Transportation Research Board, 2023(1), 37-43. doi:10.3141/2023-05Ben-Bassat, T., & Shinar, D. (2011). Effect of shoulder width, guardrail and roadway geometry on driver perception and behavior. Accident Analysis & Prevention, 43(6), 2142-2152. doi:10.1016/j.aap.2011.06.004Jia, L., Wang, J., & Lu, M. (2011). Using real-world data to calibrate a driving simulator measuring lateral driving behaviour. IET Intelligent Transport Systems, 5(1), 21-31. doi:10.1049/iet-its.2009.0094Antonson, H., Mårdh, S., Wiklund, M., & Blomqvist, G. (2009). Effect of surrounding landscape on driving behaviour: A driving simulator study. Journal of Environmental Psychology, 29(4), 493-502. doi:10.1016/j.jenvp.2009.03.005Land, M. F., & Lee, D. N. (1994). Where we look when we steer. Nature, 369(6483), 742-744. doi:10.1038/369742a0Zuriaga, A. M. P., García, A. G., Torregrosa, F. J. C., & D’Attoma, P. (2010). Modeling Operating Speed and Deceleration on Two-Lane Rural Roads with Global Positioning System Data. Transportation Research Record: Journal of the Transportation Research Board, 2171(1), 11-20. doi:10.3141/2171-02Kweon, B.-S., Ellis, C. D., Lee, S.-W., & Rogers, G. O. (2006). Large-Scale Environmental Knowledge. Environment and Behavior, 38(1), 72-91. doi:10.1177/001391650528009
Trends in integrated land use/transport modeling: An evaluation of the state of the art
Integrated land-use/transport models have five decades of history of both widely recognized successful implementations and implementations that remained far behind their originally stated goals. This paper summarizes the state of the art of integrated land-use/transport modeling and reports on findings from the Symposium for the Integration of Land-Use and Transport Models in Raitenhaslach, which is near Munich, in 2016. From these sources, the paper identifies major challenges in integrated land-use/transport modeling and proposes paths that support successful implementations. Particular attention is given to the coordination of short- and long-term decisions, the technical integration of models, microscopic versus macroscopic frameworks and appropriate levels of model complexity. The paper concludes with five themes that require further research to ensure that integrated land-use/transport models will keep up with modeling needs in the future
Operando NAP-XPS Studies of a Ceria-Supported Pd Catalyst for CO Oxidation
Supported Pd/CeO2 catalytic systems have been widely investigated in the low-temperature oxidation of CO (LTO CO) due to the unique oxygen storage capacity and redox properties of the ceria support, which highly influence the structural, chemical and electronic state of Pd species. Herein, operando near-ambient pressure XPS (NAP-XPS) technique has allowed the study of a conventional Pd/CeO2 catalyst surface during the CO oxidation reaction under experimental conditions closer to the actual catalytic reaction, unfeasible with other surface science techniques that demand UHV conditions. SEM, HRTEM and XRD analyses of the powder catalyst, prepared by conventional incipient wetness impregnation, reveal uniformly CeO2-loaded Pd NPs of less than 2 nm size, which generated an increase in oxygen vacancies with concomitant ceria reduction, as indicated by H2-TPR and Raman measurements. Adsorbed peroxide (O22−) species on the catalyst surface could also be detected by Raman spectra. Operando NAP-XPS results obtained at the ALBA Synchrotron Light Source revealed two kinds of Pd species under reaction conditions, namely PdOx and PdII ions in a PdxCe1−xO2−δ solution, the latter one appearing to be crucial for the CO oxidation. By means of a non-destructive depth profile analysis using variable synchrotron excitation energies, the location and the role of these palladium species in the CO oxidation reaction could be clarified: PdOx was found to prevail on the upper surface layers of the metallic Pd supported NPs under CO, while under reaction mixture it was rapidly depleted from the surface, leaving a greater amount in the subsurface layers (7% vs. 12%, respectively). On the contrary, the PdxCe1−xO2−δ phase, which was created at the Pd–CeO2 interface in contact with the gas environment, appeared to be predominant on the surface of the catalyst. Its presence was crucial for CO oxidation evolution, acting as a route through which active oxygen species could be transferred from ceria to Pd species for CO oxidation