1,126 research outputs found

    Multi-Choice Total Clan Games: Characterizations and Solution Concepts

    Get PDF
    This paper deals with a new class of multi-choice games, the class of multi- choice total clan games. The structure of the core of a multi-choice clan game is explicitly described. Furthermore, characterizations of multi-choice total clan games are given and bi-monotonic allocation schemes related to players' levels are introduced for such games. It turns out that some elements in the core of a multi- choice total clan game are extendable to such bi-monotonic allocation schemes via suitable compensation-sharing rules on the domain of multi-choice (total) clan games.Multi-choice games;Clan games;Monotonic allocation schemes

    A Technical Note on Lorenz Dominance in Cooperative Games

    Get PDF
    AMS classification: 91A12Cooperative games;Lorenz dominance;egalitarianism;con- strained egalitarian solution;equal split-off set

    Mechanical properties of tungsten alloys with Y2O3 and titanium additions

    Get PDF
    In this research the mechanical behaviour of pure tungsten (W) and its alloys (2 wt.% Ti–0.47 wt.% Y2O3 and 4 wt.% Ti–0.5 wt.% Y2O3) is compared. These tungsten alloys, have been obtained by powder metallurgy. The yield strength, fracture toughness and elastic modulus have been studied in the temperature interval of 25 °C to 1000 °C. The results have shown that the addition of Ti substantially improves the bending strength and toughness of W, but it also dramatically increases the DBTT. On the other hand, the addition of 0.5% Y2O3, is enough to improve noticeably the oxidation behaviour at the higher temperatures. The grain size, fractography and microstructure are studied in these materials. Titanium is a good grain growth inhibitor and effective precursor of liquid phase in HIP. The simultaneous presence of Y2O3 and Ti permits to obtain materials with low pores presenc

    Effect of solute content and temperature on the deformation mechanisms and critical resolved shear stress in Mg-Al and Mg-Zn alloys

    Full text link
    The influence of solute atoms (Al and Zn) on the deformation mechanisms and the critical resolved shear stress for basal slip in Mg alloys at 298 K and 373 K was ascertained by micropillar compression tests in combination with high-throughput processing techniques based on the diffusion couples. It was found that the presence of solute atoms enhances the size effect at 298 K as well as the localization of deformation in slip bands, which is associated with large strain bursts in the resolved shear stress (τRSS\tau_{RSS})-strain (ϵ\epsilon) curves. Deformation in pure Mg and Mg alloys was more homogeneous at 373 K and the influence of the micropillar size on the critical resolved shear stress was much smaller. In this latter case, it was possible to determine the effect of solute content on the critical resolved shear stress for basal slip in Mg-Al and Mg-Zn alloys

    Integration of capillary and EWOD technologies for autonomous and low-power consumption micro-analytical systems

    Get PDF
    This work presents a miniaturized system combining, on the same microfluidic chip, capillarity and electrowetting-on-dielectric (EWOD) techniques for movement and control of fluids. The change in hydrophobicity occurring at the edge between a capillary channel and a hydrophobic layer is successfully exploited as a stop-and-go valve, whose operation is electronically controlled through the EWOD electrodes. Taking into account the variety of microfluidic operation resulting from the combination of the two handling techniques and their characteristic features, this work prompts the development of autonomous, compact and low-power consumption lab-on-chip systems
    corecore