90 research outputs found

    Population pharmacokinetics of ganciclovir after intravenous ganciclovir and oral valganciclovir administration in solid organ transplant patients infected with cytomegalovirus

    Get PDF
    A population pharmacokinetics analysis was performed after intravenous ganciclovir and oral valganciclovir in solid organ transplant patients with cytomegalovirus. Patients received ganciclovir at 5 mg/kg of body weight (5 days) and then 900 mg of valganciclovir (16 days), both twice daily with dose adjustment for renal function. A total of 382 serum concentrations from days 5 and 15 were analyzed with NONMEM VI. Renal function given by creatinine clearance (CL(CR)) was the most influential covariate in CL. The final pharmacokinetic parameters were as follows: ganciclovir clearance (CL) was 7.49.(CL(CR)/57) liter/h (57 was the mean population value of CL(CR)); the central and peripheral distribution volumes were 31.9 liters and 32.0 liters, respectively; intercompartmental clearance was 10.2 liter/h; the first-order absorption rate constant was 0.895 h(-1); bioavailability was 0.825; and lag time was 0.382 h. The CL(CR) was the best predictor of CL, making dose adjustment by this covariate important to achieve the most efficacious ganciclovir exposure

    A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients

    Get PDF
    Aims: The aims of this study were to describe the pharmacokinetics of tacrolimus immediately after kidney transplantation, and to develop a clinical tool for selecting the best starting dose for each patient. Methods: Data on tacrolimus exposure were collected for the first 3 months following renal transplantation. A population pharmacokinetic analysis was conducted using nonlinear mixed-effects modelling. Demographic, clinical and genetic parameters were evaluated as covariates. Results: A total of 4527 tacrolimus blood samples collected from 337 kidney transplant recipients were available. Data were best described using a two-compartment model. The mean absorption rate was 3.6 h-1 , clearance was 23.0 l h-1 (39% interindividual variability, IIV), central volume of distribution was 692 l (49% IIV) and the peripheral volume of distribution 5340 l (53% IIV). Interoccasion variability was added to clearance (14%). Higher body surface area (BSA), lower serum creatinine, younger age, higher albumin and lower haematocrit levels were identified as covariates enhancing tacrolimus clearance. Cytochrome P450 (CYP) 3A5 expressers had a significantly higher tacrolimus clearance (160%), whereas CYP3A4*22 carriers had a significantly lower clearance (80%). From these significant covariates, age, BSA, CYP3A4 and CYP3A5 genotype were incorporated in a second model to individualize the tacrolimus starting dose: [Formula: see text] Both models were successfully internally and externally validated. A clinical trial was simulated to demonstrate the added value of the starting dose model. Conclusions: For a good prediction of tacrolimus pharmacokinetics, age, BSA, CYP3A4 and CYP3A5 genotype are important covariates. These covariates explained 30% of the variability in CL/F. The model proved effective in calculating the optimal tacrolimus dose based on these parameters and can be used to individualize the tacrolimus dose in the early period after transplantation

    A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients

    Get PDF
    AIMS The aims of this study were to describe the pharmacokinetics of tacrolimus immediately after kidney transplantation, and to develop a clinical tool for selecting the best starting dose for each patient. METHODS Data on tacrolimus exposure were collected for the first 3 months following renal transplantation. A population pharmacokinetic analysis was conducted using nonlinear mixed-effects modelling. Demographic, clinical and genetic parameters were evaluated as covariates. RESULTS A total of 4527 tacrolimus blood samples collected from 337 kidney transplant recipients were available. Data were best described using a two-compartment model. The mean absorption rate was 3.6 h1 , clearance was 23.0 l h–1 (39% interindividual variability, IIV), central volume of distribution was 692 l (49% IIV) and the peripheral volume of distribution 5340 l (53% IIV). Interoccasion variability was added to clearance (14%). Higher body surface area (BSA), lower serum creatinine, younger age, higher albumin and lower haematocrit levels were identified as covariates enhancing tacrolimus clearance. Cytochrome P450 (CYP) 3A5 expressers had a significantly higher tacrolimus clearance (160%), whereas CYP3A4*22 carriers had a significantly lower clearance (80%). From these significant covariates, age, BSA, CYP3A4 and CYP3A5 genotype were incorporated in a second model to individualize the tacrolimus starting dose: Both models were successfully internally and externally validated. A clinical trial was simulated to demonstrate the added value of the starting dose model. CONCLUSIONS For a good prediction of tacrolimus pharmacokinetics, age, BSA, CYP3A4 and CYP3A5 genotype are important covariates. These covariates explained 30% of the variability in CL/F. The model proved effective in calculating the optimal tacrolimus dose based on these parameters and can be used to individualize the tacrolimus dose in the early period after transplantation

    Rapamycin Ameliorates Kidney Fibrosis by Inhibiting the Activation of mTOR Signaling in Interstitial Macrophages and Myofibroblasts

    Get PDF
    Interstitial fibrosis is an inevitable outcome of all kinds of progressive chronic kidney disease (CKD). Emerging data indicate that rapamycin can ameliorate kidney fibrosis by reducing the interstitial infiltrates and accumulation of extra cellular matrix (ECM). However, the cellular mechanism that regulates those changes has not been well understood yet. In this study, we revealed the persistent activation of mammalian target of rapamycin (mTOR) signaling in the interstitial macrophages and myofibroblasts, but rarely in injured proximal epithelial cells, CD4+ T cells, neutrophils, or endothelial cells, during the development of kidney fibrosis. Administration of rapamycin to unilateral ureteral obstruction (UUO) mice significantly suppressed the immunoreactivity of mTOR signaling, which decreased the inflammatory responses and ECM accumulation in the obstructed kidneys. Isolated macrophages from rapamycin-treated obstructed kidneys presented less inflammatory activity than vehicle groups. In vitro study confirmed that rapamycin significantly inhibited the fibrogenic activation of cultured fibroblasts (NIH3T3 cells), which was induced by the stimulation of TGF-β1. Further experiment revealed that rapamycin did not directly inhibit the fibrogenesis of HK2 cells with aristolochic acid treatment. Our findings clarified that rapamycin can ameliorate kidney fibrosis by blocking the mTOR signaling in interstitial macrophages and myofibroblasts

    Superior Neuroprotective Efficacy of LAU-0901, a Novel Platelet-Activating Factor Antagonist, in Experimental Stroke

    Get PDF
    Platelet-activating factor (PAF) accumulates during cerebral ischemia, and inhibition of this process plays a critical role in neuronal survival. Recently, we demonstrated that LAU-0901, a novel PAF receptor antagonist, is neuroprotective in experimental stroke. We used magnetic resonance imaging in conjunction with behavior and immunohistopathology to expand our understanding of this novel therapeutic approach. Sprague–Dawley rats received 2 h middle cerebral artery occlusion (MCAo) and were treated with LAU-0901 (60 mg/kg) or vehicle 2 h from MCAo onset. Behavioral function, T2-weighted imaging (T2WI), and apparent diffusion coefficients were performed on days 1, 3, and 7 after MCAo. Infarct volume and number of GFAP, ED-1, and NeuN-positive cells were conducted on day 7. Behavioral deficit was significantly improved by LAU-0901 treatment compared to vehicle on days 1, 3, and 7. Total lesion volumes computed from T2WI were significantly reduced by LAU-0901 on days 1, 3, and 7 (by 83%, 90%, and 96%, respectively), which was consistent with decreased edema formation. Histopathology revealed that LAU-0901 treatment resulted in significant reduction of cortical and subcortical infarct volumes, attenuated microglial infiltration, and promoted astrocytic and neuronal survival. These findings suggest LAU-0901 is a promising neuroprotectant and provide the basis for future therapeutics in patients suffering ischemic stroke

    Cyclin-dependent kinases 7 and 9 specifically regulate neutrophil transcription and their inhibition drives apoptosis to promote resolution of inflammation

    Get PDF
    Terminally differentiated neutrophils are short-lived but the key effector cells of the innate immune response, and have a prominent role in the pathogenesis and propagation of many inflammatory diseases. Delayed apoptosis, which is responsible for their extended longevity, is critically dependent on a balance of intracellular survival versus pro-apoptotic proteins. Here, we elucidate the mechanism by which the cyclin-dependent kinase (CDK) inhibitor drugs such as R-roscovitine and DRB (5,6-dichloro-1-beta--ribofuranosylbenzimidazole) mediate neutrophil apoptosis. We demonstrate (by a combination of microarray, confocal microscopy, apoptosis assays and western blotting) that the phosphorylation of RNA polymerase II by CDKs 7 and 9 is inhibited by R-roscovitine and that specific effects on neutrophil transcriptional capacity are responsible for neutrophil apoptosis. Finally, we show that specific CDK7 and 9 inhibition with DRB drives resolution of neutrophil-dominant inflammation. Thus, we highlight a novel mechanism that controls both primary human neutrophil transcription and apoptosis that could be targeted by selective CDK inhibitor drugs to resolve established inflammation

    Thermal Stabilization of an Endoglucanase by Cyclization

    Get PDF
    An intein-driven protein splicing approach allowed for the covalent linkage between the N- and C-termini of a polypeptide chain to create circular variants of the endo-β-1,3-1,4-glucanase, LicA, from Bacillus licheniformis. Two circular variants, LicA-C1 and LicA-C2, which have connecting loops of 20 and 14 amino acids, respectively, showed catalytic activities that are approximately two and three times higher, respectively, compared to that of the linear LicA (LicA-L1). The thermal stability of the circular variants was significantly increased compared to the linear form. Whereas the linear glucanase lost half of its activity after 3 min at 65 °C, the two circular variants have 6-fold (LicA-C1) and 16-fold (LicA-C2) increased half-life time of inactivation. In agreement with this, fluorescence spectroscopy and differential scanning calorimetry studies revealed that circular enzymes undergo structural changes at higher temperatures compared to that of the linear form. The effect of calcium on the conformational stability and function of the circular LicAs was also investigated, and we observed that the presence of calcium ions results in increased thermal stability. The impact of the length of the designed loops on thermal stability of the circular proteins is discussed, and it is suggested that cyclization may be an efficient strategy for the increased stability of proteins

    Preconditioning with Physiological Levels of Ethanol Protect Kidney against Ischemia/Reperfusion Injury by Modulating Oxidative Stress

    Get PDF
    Oxidative stress due to excessive production of reactive oxygen species (ROS) and subsequent lipid peroxidation plays a critical role in renal ischemia/reperfusion (IR) injury. The purpose of current study is to demonstrate the effect of antecedent ethanol exposure on IR-induced renal injury by modulation of oxidative stress.Bilateral renal warm IR was induced in male C57BL/6 mice after ethanol or saline administration. Blood ethanol concentration, kidney function, histological damage, inflammatory infiltration, cytokine production, oxidative stress, antioxidant capacity and Aldehyde dehydrogenase (ALDH) enzymatic activity were assessed to evaluate the impact of antecedent ethanol exposure on IR-induced renal injury.After bilateral kidney ischemia, mice preconditioned with physiological levels of ethanol displayed significantly preserved renal function along with less histological tubular damage as manifested by the reduced inflammatory infiltration and cytokine production. Mechanistic studies revealed that precondition of mice with physiological levels of ethanol 3 h before IR induction enhanced antioxidant capacity characterized by significantly higher superoxidase dismutase (SOD) activities. Our studies further demonstrated that ethanol pretreatment specifically increased ALDH2 activity, which then suppressed lipid peroxidation by promoting the detoxification of Malondialdehyde (MDA) and 4-hydroxynonenal (HNE).Our results provide first line of evidence indicating that antecedent ethanol exposure can provide protection for kidneys against IR-induced injury by enhancing antioxidant capacity and preventing lipid peroxidation. Therefore, ethanol precondition and ectopic ALDH2 activation could be potential therapeutic approaches to prevent renal IR injury relevant to various clinical conditions
    • …
    corecore