32 research outputs found

    Desarrollo de un chip de DNA para la detección de dianas génicas bacterianas de interés en el campo de la acuicultura

    Get PDF
    La adquisición bacteriana de multiresistencias frente a antimicrobianos es un fenómeno cada vez más preocupante, con gran repercusión para la salud pública, pero también con impacto en sectores de la producción animal, como es el caso particular de la acuicultura. Entre los años 2010-2012, como objetivo de un Proyecto de Investigación Italiano (Progetti d’interesse Nazionale, PRIN), se realizaron diferentes campañas de muestreo a lo largo de la costa del mar Adriático, en centros dedicados a la acuicultura y áreas costeras, estudiando la incidencia de bacterias multiresistentes, así como de los elementos genéticos móviles responsables de su adquisición, desarrollando además una herramienta biotecnológica que agiliza este tipo de estudios permitiendo detectar 164 dianas génicas en un único soporte. Se obtuvo una colección de 1274 aislados bacterianos, a partir de muestras de agua, sedimento y biofilm, resistentes a las distintas combinaciones de antibióticos utilizados según la legislación italiana. Del total, 105 (8,25%) aislados resultaron ser multiresistentes, detectándose en el 13,59% el integrón de clase I, en el 14,56% el plásmido pAb5s9, en el 5,82% el elemento SXT/R391, y en el 15,52% diferentes combinaciones de estos elementos genéticos. Basándonos en estos resultados, se ha desarrollado y validado un chip de DNA que permite detectar en un mismo soporte, genes que codifican para determinantes de resistencia a antimicrobianos, elementos genéticos móviles (MGE), genes para la detección de especies bacterianas patógenas con repercusión en acuicultura y para la salud del hombre, e indicadores de contaminación fecal.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Achromobacter spp. adaptation in cystic fibrosis infection and candidate biomarkers of antimicrobial resistance

    Get PDF
    Achromobacter spp. can establish occasional or chronic lung infections in patients with cystic fibrosis (CF). Chronic colonization has been associated with worse prognosis highlighting the need to identify markers of bacterial persistence. To this purpose, we analyzed phenotypic features of 95 Achromobacter spp. isolates from 38 patients presenting chronic or occasional infection. Virulence was tested in Galleria mellonella larvae, cytotoxicity was tested in human bronchial epithelial cells, biofilm production in static conditions was measured by crystal violet staining and susceptibility to selected antibiotics was tested by the disk diffusion method. The presence of genetic loci associated to the analyzed phenotypic features was evaluated by a genome-wide association study. Isolates from occasional infection induced significantly higher mortality of G. mellonella larvae and showed a trend for lower cytotoxicity than chronic infection isolates. No significant difference was observed in biofilm production among the two groups. Additionally, antibiotic susceptibility testing showed that isolates from chronically-infected patients were significantly more resistant to sulfonamides and meropenem than occasional isolates. Candidate genetic biomarkers associated with antibiotic resistance or sensitivity were identified. Achromobacter spp. strains isolated from people with chronic and occasional lung infection exhibit different virulence and antibiotic susceptibility features, which could be linked to persistence in CF lungs. This underlines the possibility of identifying predictive biomarkers of persistence that could be useful for clinical purposes

    Convergent genetic and expression data implicate immunity in Alzheimer's disease

    Get PDF
    Background Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis. Methods The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05). Conclusions The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics

    A New Method to Easily Assess Bacteriostatic and Bactericidal Activity of Ultraviolet Radiation Using Quantitative Image Analysis

    No full text
    : Ultraviolet (UV) radiation can elicit both bactericidal and bacteriostatic activity depending on light parameters and targeted bacteria. Current methods based on bacterial growth on solid medium allow measurement of only bactericidal but not bacteriostatic activity, while liquid cultures exhibit low light penetration. Here, we propose a method to quantify both bactericidal and bacteriostatic activity of radiation based on (a) bacterial cultures on solid medium, (b) acquisition and quantitative analysis of photographic images of plates containing bacterial colonies, (c) application of two mathematical equations to evaluate bactericidal and bacteriostatic activity. The proposed method considers the differences in growth on test and control (unexposed) plates. The measurements performed on the plates image are the independent variables of the mathematical equations returning the values of bactericidal and bacteriostatic activity. Experimentally, a test was performed using Escherichia coli grown on a solid medium and exposed to UVA (365 nm) radiation. The standard method allowed quantifying bactericidal activity and evaluating only qualitatively bacteriostatic activity of the radiation. Differently, the new method here proposed allowed quantification of both activities. The proposed method proved to be simple, enabling deep assessment of the antibacterial effects of UV radiation directly on the solid medium through image acquisition and analysis

    Paradoxical response of Enterococcus faecalis to the bactericidal activity of penicillin is associated with reduced activity of one autolysin.

    No full text
    Ten clinical isolates of Enterococcus faecalis were examined for susceptibility to the bactericidal activity of penicillin. Four of these had MBCs of penicillin equal to 2 to 4 x the MIC, and six exhibited a paradoxical response to penicillin, i.e., the bactericidal activity of the antibiotic had a concentration optimum at 2 to 4 x the MIC and decreased significantly at concentrations above this. We found that the paradoxical response to penicillin was an intrinsic and stable property of a strain, but that its phenotypic expression was not homogeneous; only a fraction of the cell population that died at low concentrations was able to survive at high penicillin concentrations. The size of this fraction increased with increasing antibiotic concentration and reached a maximum in the late-log phase of growth. All 10 strains produced a lytic enzyme that was active on Micrococcus luteus heat-killed cells, whereas only some strains lysed E. faecalis heat-killed cells. Strains producing large amounts of the latter enzyme did not show the paradoxical response to penicillin, whereas mutants of these strains that lacked this enzymatic activity paradoxically responded to the antibiotic activity. In addition, from strains that showed paradoxical response to penicillin and produced only the enzyme that was active on M. luteus, it was possible to isolate mutants that were also capable of lysing E. faecalis cells and that were killed with similar efficiency by all concentrations above the MBC. On the basis of these findings, the paradoxical response to penicillin is explained as a property of certain strains of E. faecalis; this property is genetically characterized by alterations in synthesis or activity of one autolysin but phenotypically expressed only by a few cells that are in a particular physiological condition when exposed to high concentrations of antibiotics

    Effect on Human Cells of Environmental Vibrio parahaemolyticus Strains Carrying Type III Secretion System 2▿

    No full text
    Vibrio parahaemolyticus is an inhabitant of estuarine and marine environments that causes seafood-borne gastroenteritis worldwide. Recently, a type 3 secretion system (T3SS2) able to secrete and translocate virulence factors into the eukaryotic cell has been identified in a pathogenicity island (VP-PAI) located on the smaller chromosome. These virulence-related genes have previously been detected only in clinical strains. Classical virulence genes for this species (tdh, trh) are rarely detected in environmental strains, which are usually considered to lack virulence potential. However, during screening of a collection of environmental V. parahaemolyticus isolates obtained in the North Adriatic Sea in Italy, a number of marine strains carrying virulence-related genes, including genes involved in the T3SS2, were detected. In this study, we investigated the pathogenic potential of these marine V. parahaemolyticus strains by studying their adherence ability, their cytotoxicity, their effect on zonula occludin protein 1 (ZO-1) of the tight junctions, and their effect on transepithelial resistance (TER) in infected Caco-2 cells. By performing a reverse transcription-PCR, we also tested the expression of the T3SS2 genes vopT and vopB2, encoding an effector and a translocon protein, respectively. Our results indicate that, similarly to clinical strains, marine V. parahaemolyticus strains carrying vopT and vopB2 and that other genes included in the VP-PAI are capable of adhering to human cells and of causing cytoskeletal disruption and loss of membrane integrity in infected cells. On the basis of data presented here, environmental V. parahaemolyticus strains should be included in coastal water surveillance plans, as they may represent a risk for human health

    Achromobacter spp. prevalence and adaptation in cystic fibrosis lung infection

    No full text
    Bacteria belonging to the genus Achromobacter are widely distributed in natural environments and have been recognized as emerging pathogens for their contribution to a wide range of human infections. In particular, patients with cystic fibrosis (CF) are the subjects most frequently colonized by Achromobacter spp., which can cause persistent infections in their respiratory tract. Although many clinical aspects and pathogenic mechanisms still remain to be elucidated, Achromobacter spp. have been a source of expanding interest in recent years. This review examines the current literature regarding Achromobacter spp. role in CF, focusing on taxonomy, prevalence in CF lung infections, genomic characteristics, and adaptation strategies including modifications of metabolism and virulence, acquisition of antibiotic resistance, exchange of mobile genetic elements and development of hypermutation
    corecore