2,162 research outputs found
Competing Interactions among Supramolecular Structures on Surfaces
A simple model was constructed to describe the polar ordering of
non-centrosymmetric supramolecular aggregates formed by self assembling
triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice
with an Ising-like penalty associated with reversing the orientation of nearest
neighbor dipoles. The choice of the potentials is based on experimental results
and structural features of the supramolecular objects. For films of finite
thickness, we find a periodic structure along an arbitrary direction
perpendicular to the substrate normal, where the repeat unit is composed of two
equal width domains with dipole up and dipole down configuration. When a short
range interaction between the surface and the dipoles is included the balance
between the up and down dipole domains is broken. Our results suggest that due
to surface effects, films of finite thickness have a none zero macroscopic
polarization, and that the polarization per unit volume appears to be a
function of film thickness.Comment: 3 pages, 3 eps figure
A Sensor Fusion Algorithm for Filtering Pyrometer Measurement Noise in the Czochralski Crystallization Process
The Czochralski (CZ) crystallization process is used to produce monocrystalline silicon for solar cell wafers and electronics. Tight temperature control of the molten silicon is most important for achieving high crystal quality. SINTEF Materials and Chemistry operates a CZ process. During one CZ batch, two pyrometers were used for temperature measurement. The silicon pyrometer measures the temperature of the molten silicon. This pyrometer is assumed to be accurate, but has much high-frequency measurement noise. The graphite pyrometer measures the temperature of a graphite material. This pyrometer has little measurement noise. There is quite a good correlation between the two pyrometer measurements. This paper presents a sensor fusion algorithm that merges the two pyrometer signals for producing a temperature estimate with little measurement noise, while having significantly less phase lag than traditional lowpass- filtering of the silicon pyrometer. The algorithm consists of two sub-algorithms: (i) A dynamic model is used to estimate the silicon temperature based on the graphite pyrometer, and (ii) a lowpass filter and a highpass filter designed as complementary filters. The complementary filters are used to lowpass-filter the silicon pyrometer, highpass-filter the dynamic model output, and merge these filtered signals. Hence, the lowpass filter attenuates noise from the silicon pyrometer, while the graphite pyrometer and the dynamic model estimate those frequency components of the silicon temperature that are lost when lowpass-filtering the silicon pyrometer. The algorithm works well within a limited temperature range. To handle a larger temperature range, more research must be done to understand the process' nonlinear dynamics, and build this into the dynamic model
Improved model identification for non-linear systems using a random subsampling and multifold modelling (RSMM) approach
In non-linear system identification, the available observed data are conventionally partitioned into two parts: the training data that are used for model identification and the test data that are used for model performance testing. This sort of 'hold-out' or 'split-sample' data partitioning method is convenient and the associated model identification procedure is in general easy to implement. The resultant model obtained from such a once-partitioned single training dataset, however, may occasionally lack robustness and generalisation to represent future unseen data, because the performance of the identified model may be highly dependent on how the data partition is made. To overcome the drawback of the hold-out data partitioning method, this study presents a new random subsampling and multifold modelling (RSMM) approach to produce less biased or preferably unbiased models. The basic idea and the associated procedure are as follows. First, generate K training datasets (and also K validation datasets), using a K-fold random subsampling method. Secondly, detect significant model terms and identify a common model structure that fits all the K datasets using a new proposed common model selection approach, called the multiple orthogonal search algorithm. Finally, estimate and refine the model parameters for the identified common-structured model using a multifold parameter estimation method. The proposed method can produce robust models with better generalisation performance
Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels.
Foliar shade triggers rapid growth of specific structures that facilitate access of the plant to direct sunlight. In leaves of many plant species, this growth response is complex because, although shade triggers the elongation of petioles, it reduces the growth of the lamina. How the same external cue leads to these contrasting growth responses in different parts of the leaf is not understood. Using mutant analysis, pharmacological treatment and gene expression analyses, we investigated the role of PHYTOCHROME INTERACTING FACTOR7 (PIF7) and the growth-promoting hormone auxin in these contrasting leaf growth responses. Both petiole elongation and lamina growth reduction are dependent on PIF7. The induction of auxin production is both necessary and sufficient to induce opposite growth responses in petioles vs lamina. However, these contrasting growth responses are not caused by different auxin concentrations in the two leaf parts. Our work suggests that a transient increase in auxin levels triggers tissue-specific growth responses in different leaf parts. We provide evidence suggesting that this may be caused by the different sensitivity to auxin in the petiole vs the blade and by tissue-specific gene expression
Prescription for experimental determination of the dynamics of a quantum black box
We give an explicit prescription for experimentally determining the evolution
operators which completely describe the dynamics of a quantum mechanical black
box -- an arbitrary open quantum system. We show necessary and sufficient
conditions for this to be possible, and illustrate the general theory by
considering specifically one and two quantum bit systems. These procedures may
be useful in the comparative evaluation of experimental quantum measurement,
communication, and computation systems.Comment: 6 pages, Revtex. Submitted to J. Mod. Op
Spectral Line Removal in the LIGO Data Analysis System (LDAS)
High power in narrow frequency bands, spectral lines, are a feature of an
interferometric gravitational wave detector's output. Some lines are coherent
between interferometers, in particular, the 2 km and 4 km LIGO Hanford
instruments. This is of concern to data analysis techniques, such as the
stochastic background search, that use correlations between instruments to
detect gravitational radiation. Several techniques of `line removal' have been
proposed. Where a line is attributable to a measurable environmental
disturbance, a simple linear model may be fitted to predict, and subsequently
subtract away, that line. This technique has been implemented (as the command
oelslr) in the LIGO Data Analysis System (LDAS). We demonstrate its application
to LIGO S1 data.Comment: 11 pages, 5 figures, to be published in CQG GWDAW02 proceeding
Extracting dynamical equations from experimental data is NP-hard
The behavior of any physical system is governed by its underlying dynamical
equations. Much of physics is concerned with discovering these dynamical
equations and understanding their consequences. In this work, we show that,
remarkably, identifying the underlying dynamical equation from any amount of
experimental data, however precise, is a provably computationally hard problem
(it is NP-hard), both for classical and quantum mechanical systems. As a
by-product of this work, we give complexity-theoretic answers to both the
quantum and classical embedding problems, two long-standing open problems in
mathematics (the classical problem, in particular, dating back over 70 years).Comment: For mathematical details, see arXiv:0908.2128[math-ph]. v2: final
version, accepted in Phys. Rev. Let
Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis.
Plants such as Arabidopsis thaliana respond to foliar shade and neighbors who may become competitors for light resources by elongation growth to secure access to unfiltered sunlight. Challenges faced during this shade avoidance response (SAR) are different under a light-absorbing canopy and during neighbor detection where light remains abundant. In both situations, elongation growth depends on auxin and transcription factors of the phytochrome interacting factor (PIF) class. Using a computational modeling approach to study the SAR regulatory network, we identify and experimentally validate a previously unidentified role for long hypocotyl in far red 1, a negative regulator of the PIFs. Moreover, we find that during neighbor detection, growth is promoted primarily by the production of auxin. In contrast, in true shade, the system operates with less auxin but with an increased sensitivity to the hormonal signal. Our data suggest that this latter signal is less robust, which may reflect a cost-to-robustness tradeoff, a system trait long recognized by engineers and forming the basis of information theory
Prediction and Simulator Verification of Roll/Lateral Adverse Aeroservoelastic Rotorcraft–Pilot Couplings
The involuntary interaction of a pilot with an aircraft can be described as pilot-assisted oscillations. Such
phenomena are usually only addressed late in the design process when they manifest themselves during ground/flight
testing. Methods to be able to predict such phenomena as early as possible are therefore useful. This work describes a
technique to predict the adverse aeroservoelastic rotorcraft–pilot couplings, specifically between a rotorcraft’s roll
motion and the resultant involuntary pilot lateral cyclic motion. By coupling linear vehicle aeroservoelastic models
and experimentally identified pilot biodynamic models, pilot-assisted oscillations and no-pilot-assisted oscillation
conditions have been numerically predicted for a soft-in-plane hingeless helicopter with a lightly damped regressive
lead–lag mode that strongly interacts with the roll modeat a frequency within the biodynamic band of the pilots. These
predictions have then been verified using real-time flight-simulation experiments. The absence of any similar adverse
couplings experienced while using only rigid-body models in the flight simulator verified that the observed
phenomena were indeed aeroelastic in nature. The excellent agreement between the numerical predictions and the
observed experimental results indicates that the techniques developed in this paper can be used to highlight the
proneness of new or existing designs to pilot-assisted oscillation
Carbon isotope values of hazelnut shells: a new proxy for canopy density
Hazel (Corylus avellana) has been abundant in the vegetation of northern and central Europe since the early Holocene and has provided food and materials for humans ever since. Here we use stable carbon isotope (δ13 14 C) values of hazelnut shells to infer woodland openness based on the premise of the “canopy effect”. It is well established that plants growing in dense, shaded forests have lower carbon isotope (δ13C) values than plants growing in open areas. By measuring δ13 C values in hazelnuts collected from trees growing in different levels of light intensity, we show that the canopy effect is preserved in hazelnuts and that their δ13 C values can be used to infer woodland openness in the past. We apply the method to hazelnuts recovered from sites dated to between the Mesolithic and Iron Age (c. 7000 BCE to 1000 CE) in southern Sweden. Our results show that the nuts dated to the Mesolithic were harvested from hazels growing in a range of closed to open settings while nuts from subsequent periods were harvested from progressively more open environments. Given the abundance of hazelnuts recovered from many archaeological contexts, this method has the potential to reconstruct the microhabitats exploited by humans in the past and explore the impact of humans on their environment
- …