2,209 research outputs found
Assembly Bias of Dwarf-sized Dark Matter Haloes
Previous studies indicate that assembly bias effects are stronger for lower
mass dark matter haloes. Here we make use of high resolution re-simulations of
rich clusters and their surroundings from the Phoenix Project and a large
volume cosmological simulation, the Millennium-II run, to quantify assembly
bias effects on dwarf-sized dark matter haloes. We find that, in the regions
around massive clusters, dwarf-sized haloes ([10^9,10^{11}]\ms) form earlier
( in redshift) and possess larger ()
than the field galaxies. We find that this environmental dependence is largely
caused by tidal interactions between the ejected haloes and their former hosts,
while other large scale effects are less important. Finally we assess the
effects of assembly bias on dwarf galaxy formation with a sophisticated
semi-analytical galaxy formation model. We find that the dwarf galaxies near
massive clusters tend to be redder () and have three times
as much stellar mass compared to the field galaxies with the same halo mass.
These features should be seen with observational data.Comment: 8 pages, 8 figures, accepted by MNRA
BSG alignment of SDSS galaxy groups
We study the alignment signal between the distribution of brightest satellite
galaxies (BSGs) and the major axis of their host groups using SDSS group
catalog constructed by Yang et al. (2007). After correcting for the effect of
group ellipticity, a statistically significant (~ 5\sigma) major-axis alignment
is detected and the alignment angle is found to be 43.0 \pm 0.4 degrees. More
massive and richer groups show stronger BSG alignment. The BSG alignment around
blue BCGs is slightly stronger than that around red BCGs. And red BSGs have
much stronger major-axis alignment than blue BSGs. Unlike BSGs, other
satellites do not show very significant alignment with group major axis. We
further explore the BSG alignment in semi-analytic model (SAM) constructed by
Guo et al. (2011). We found general good agreement with observations: BSGs in
SAM show strong major-axis alignment which depends on group mass and richness
in the same way as observations; and none of other satellites exhibit prominent
alignment. However, discrepancy also exists in that the SAM shows opposite BSG
color dependence, which is most probably induced by the missing of large scale
environment ingredient in SAM. The combination of two popular scenarios can
explain the detected BSG alignment. The first one: satellites merged into the
group preferentially along the surrounding filaments, which is strongly aligned
with the major axis of the group. The second one: BSGs enter their host group
more recently than other satellites, then will preserve more information about
the assembling history and so the major-axis alignment. In SAM, we found
positive evidence for the second scenario by the fact that BSGs merged into
groups statistically more recently than other satellites. On the other hand,
although is opposite in SAM, the BSG color dependence in observation might
indicate the first scenario as well.Comment: 8 pages, 11 figures, ApJ accepte
Measuring subhalo mass in redMaPPer clusters with CFHT Stripe 82 Survey
We use the shear catalog from the CFHT Stripe-82 Survey to measure the
subhalo masses of satellite galaxies in redMaPPer clusters. Assuming a Chabrier
Initial Mass Function (IMF) and a truncated NFW model for the subhalo mass
distribution, we find that the sub-halo mass to galaxy stellar mass ratio
increases as a function of projected halo-centric radius , from at to
at
. We also investigate the dependence of subhalo masses on stellar
mass by splitting satellite galaxies into two stellar mass bins:
and . The best-fit subhalo mass of the more massive satellite galaxy bin
is larger than that of the less massive satellites: () versus ().Comment: 10 pages, 8 figures, accepted by MNRA
Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver
Citation: He, J. et al. Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver. Sci. Rep. 6, 27418; doi: 10.1038/srep27418 (2016).Fat character is an important index in duck culture that linked to local flavor, feed cost and fat intake for costumers. Since the regulation networks in duck lipid metabolism had not been reported very clearly, we aimed to explore the potential miRNA-mRNA pairs and their regulatory roles in duck lipid metabolism. Here, Cherry-Valley ducks were selected and treated with/without 5% oil added in feed for 2 weeks, and then fat content determination was performed on. The data showed that the fat contents and the fatty acid ratios of C17:1 and C18:2 were up-regulated in livers of oil-added ducks, while the C12:0 ratio was down-regulated. Then 21 differential miRNAs, including 10 novel miRNAs, were obtain from the livers by sequencing, and 73 target genes involved in lipid metabolic processes of these miRNAs were found, which constituted 316 miRNA-mRNA pairs. Two miRNA-mRNA pairs including one novel miRNA and one known miRNA, N-miR-16020-FASN and gga-miR-144-ELOVL6, were selected to validate the miRNA-mRNA negative relation. And the results showed that N-mir-16020 and gga-miR-144 could respectively bind the 3?-UTRs of FASN and ELOVL6 to control their expressions. This study provides new sights and useful information for future research on regulation network in duck lipid metabolism
Analysis of the supporting attitude of Changsha-Zhuzhou-Xiangtan residents toward the interactive development of sports events and urban tourism
This study investigated the supportive attitudes of residents in Changsha-Zhuzhou-Xiangtan toward the interactive development of sports events and urban tourism. The study employed a survey-based quantitative method, with a total of 115 residents participating. The survey assessed the impact through three key dimensions: economic impact, tourism image impact, and spatial impact, comprising 12 factors. The results indicated strong support among residents for the idea that sports events can generate economic benefits, enhance the urban tourism image, and stimulate spatial development. Sports events impact the tourism economy, improve the city's image, and create a cultural ambiance, fostering mutual growth between sports and tourism in the region. Pearson correlation analysis revealed a significant positive relationship (p<0.05) between sports events and tourism-related income, including transportation, dining, and accommodation. Residents' cognitive attitudes are explained by 35.5% of these factors, while 83.8% of their willingness to support the events is attributed to the same factors. Local governments should support distinctive sports events, optimize tourism resources, and enhance infrastructure to stimulate rapid economic growth
Estimating perfluorocarbon emission factors for industrial rare earth metal electrolysis
Rare earth (RE) metals have been widely applied in new materials, leading to their drastic production increase in the last three decades. In the production process featured by the molten-fluoride electrolysis technology, perfluorocarbon (PFC) emissions are significant and therefore deserve full accounting in greenhouse gas (GHG) emission inventories. Yet, in the ‘2006 IPCC Guidelines for National Greenhouse Gas Inventories’, no method currently exists to account for PFC emissions from rare earth metal production. This research aims to determine emission factors for industrial rare earth metals production through on-site monitoring and lab analysis of PFC concentrations in the exhaust gases from rare earth metal electrolysis. Continuous FTIR measurements and time-integrated samples (analysed off-site by high-precision Medusa GC–MS) were conducted over 24–60 h periods from three rare earth companies in China, covering production of multiple rare earth metals/alloys including Pr-Nd, La and Dy-Fe. The study confirmed that PFC emissions are generated during electrolysis, typically in the form of CF4 (∼90% wt of detected PFCs), C2F6 (∼10%) and C3F8 (<1%); trace levels of c-C4F8 and C4F10 were also detected. In general, PFC emission factors vary with rare earth metal produced and from one facility to another, ranging from 26.66 to 109.43 g/t-RE for CF4 emissions, 0.26 to 10.95 g/t-RE for C2F6, and 0.03 to 0.27 g/t-RE for C3F8. Converted to 211.60 to 847.41 kg CO2-e/t-RE for total PFCs, this emissions intensity for rare earths electrolysis is of lower (for most RE production) or similar (Dy-Fe production) level of magnitude to industrial aluminium electrolysis
Imaging and Pathological Features of Percutaneous Cryosurgery on Normal Lung Evaluated in a Porcine Model
Background and objective Lung cancer is one of the most commonly occurring malignancies and frequent causes of death in the world. Cryoablation is a safe and alternative treatment for unresectable lung cancer. Due to the lung being gas-containing organ and different from solid organs such as liver and pancreas, it is difficult to achieve the freezing range of beyond the tumor edge 1 cm safety border. The aim of this study is to examine the effect of different numbers of freeze cycles on the effectiveness of cryoablation on normal lung tissue and to create an operation guideline that gives the best effect. Methods Six healthy Tibetan miniature pigs were given a CT scan and histological investigation after percutaneous cryosurgery. Cryoablation was performed as 2 cycles of 10 min of active freezing in the left lung; each freeze followed by a 5 min thaw. In the right lung, we performed the same 2 cycles of 5 min of freezing followed by 5 min of thawing. However, for the right lung, we included a third cycle of consisting of 10 min of freezing followed by 5 min of thawing. Three cryoprobes were inserted into the left lung and three cryoprobes in the right lung per animal, one in the upper and two in the lower lobe, so as to be well away from each other. Comparison under the same experimental condition was necessary. During the experiment, observations were made regarding the imaging change of ice-ball. The lungs were removed postoperatively at 3 intervals: 4 h, 3 d of postoperation and 7 d of postoperation, respectively, to view microscopic and pathological change. Results The ice-ball grew gradually in relation to the increase in time, and the increase in number of cycles. The size of the cryolesion (hypothesis necrotic area) in specimens, over time, became larger in size than the size of the ice-ball during operation, regardless of whether 2 or 3 freeze-thaw cycles were performed. The area of necrosis was gradually increased over the course of time. The hypothesis necrotic area was equal to necrosis area 3 d after cryosurgery. Conclusion Percutaneous cryoablation of the lung can achieve complete ablation of target tissue. The freezing technique may be different depending on the individual circumstances of each tumor. In technology, 3 freeze-thaw cycles are recommended, and the range of cryoablation’s effective diameter may be not necessarily beyond the tumor edge at least 1 cm safe border during cryosurgery
- …
