155 research outputs found
Evolution of the Chinese Labor Problem in Trade and Investment Agreements: Notional Gap and Normative Necessity for Accession to CPTPP
China’s perspective on labor regulation has impeded its integration into the global market. Although evidence indicates an attempt to assimilate to the dominant global markets’ perspectives, major challenges in labor exist. This article will assess the manner and likelihood that China will overcome these challenges to join critical trade agreements and partnerships, with the Comprehensive and Progressive Agreement for Trans-Pacific Partnership (“CPTPP”) as the latest analytical sample. The main issue is how China can prove its compliance with CPTPP labor provisions rather than bargaining over the division of relevant rights or obligations. China’s linkage efforts with free trade agreements and bilateral investment treaties since 2005 have used some initial normative labor elements, such as the “not lowering requirement,” the “effective domestic enforcement,” and the use of a “panel of experts in inter- governmental labor disputes settlement” for negotiation. However, critical divergences on the interpretation of freedom of association, effective recognition of collective bargaining, and the right to strike, are predicted to dominate the accession negotiation in labor topic. Further, these are ideas that are rooted in notional gaps that have formed for years from the dynamic interaction between China and external parties under the framework of the International Labor Organization (“ILO”), the World Trade Organization (“WTO”), and trade and investment agreements. These gaps occurred through the difference in viewing the freedom of association, the effective recognition of collective bargaining, and the right to strike as “politically sensitive issues [versus] trade-related social issues”, “internal affairs [versus] international labor cooperation” or “priority of domestic regulation [versus] with C87 and C98 as the minimum basis of international legitimacy for trade cooperation.” Based on these challenges, critical points for China’s accession negotiation in labor topics as an Aspirant Economy of CPTPP lie in whether the implementation of required provisions will be before or after accession, and a possible choice of compliance strategies that emulate the Vietnamese mode or Mexican mode. Recognizing that the final result is up to the complicated compromise and consensus between China and the eleven original Signatories of CPTPP, it is an opportunity for the accession negotiation to act as a lever to push forward China’s bottom-up labor law reform
Molecular basis for heat desensitization of TRPV1 ion channels.
The transient receptor potential vanilloid 1 (TRPV1) ion channel is a prototypical molecular sensor for noxious heat in mammals. Its role in sustained heat response remains poorly understood, because rapid heat-induced desensitization (Dh) follows tightly heat-induced activation (Ah). To understand the physiological role and structural basis of Dh, we carried out a comparative study of TRPV1 channels in mouse (mV1) and those in platypus (pV1), which naturally lacks Dh. Here we show that a temperature-sensitive interaction between the N- and C-terminal domains of mV1 but not pV1 drives a conformational rearrangement in the pore leading to Dh. We further show that knock-in mice expressing pV1 sensed heat normally but suffered scald damages in a hot environment. Our findings suggest that Dh evolved late during evolution as a protective mechanism and a delicate balance between Ah and Dh is crucial for mammals to sense and respond to noxious heat
Continuous Input Embedding Size Search For Recommender Systems
Latent factor models are the most popular backbones for today's recommender
systems owing to their prominent performance. Latent factor models represent
users and items as real-valued embedding vectors for pairwise similarity
computation, and all embeddings are traditionally restricted to a uniform size
that is relatively large (e.g., 256-dimensional). With the exponentially
expanding user base and item catalog in contemporary e-commerce, this design is
admittedly becoming memory-inefficient. To facilitate lightweight
recommendation, reinforcement learning (RL) has recently opened up
opportunities for identifying varying embedding sizes for different
users/items. However, challenged by search efficiency and learning an optimal
RL policy, existing RL-based methods are restricted to highly discrete,
predefined embedding size choices. This leads to a largely overlooked potential
of introducing finer granularity into embedding sizes to obtain better
recommendation effectiveness under a given memory budget. In this paper, we
propose continuous input embedding size search (CIESS), a novel RL-based method
that operates on a continuous search space with arbitrary embedding sizes to
choose from. In CIESS, we further present an innovative random walk-based
exploration strategy to allow the RL policy to efficiently explore more
candidate embedding sizes and converge to a better decision. CIESS is also
model-agnostic and hence generalizable to a variety of latent factor RSs,
whilst experiments on two real-world datasets have shown state-of-the-art
performance of CIESS under different memory budgets when paired with three
popular recommendation models.Comment: To appear in SIGIR'2
Towards Personalized Privacy: User-Governed Data Contribution for Federated Recommendation
Federated recommender systems (FedRecs) have gained significant attention for
their potential to protect user's privacy by keeping user privacy data locally
and only communicating model parameters/gradients to the server. Nevertheless,
the currently existing architecture of FedRecs assumes that all users have the
same 0-privacy budget, i.e., they do not upload any data to the server, thus
overlooking those users who are less concerned about privacy and are willing to
upload data to get a better recommendation service. To bridge this gap, this
paper explores a user-governed data contribution federated recommendation
architecture where users are free to take control of whether they share data
and the proportion of data they share to the server. To this end, this paper
presents a cloud-device collaborative graph neural network federated
recommendation model, named CDCGNNFed. It trains user-centric ego graphs
locally, and high-order graphs based on user-shared data in the server in a
collaborative manner via contrastive learning. Furthermore, a graph mending
strategy is utilized to predict missing links in the graph on the server, thus
leveraging the capabilities of graph neural networks over high-order graphs.
Extensive experiments were conducted on two public datasets, and the results
demonstrate the effectiveness of the proposed method
Gaussian Head Avatar: Ultra High-fidelity Head Avatar via Dynamic Gaussians
Creating high-fidelity 3D head avatars has always been a research hotspot,
but there remains a great challenge under lightweight sparse view setups. In
this paper, we propose Gaussian Head Avatar represented by controllable 3D
Gaussians for high-fidelity head avatar modeling. We optimize the neutral 3D
Gaussians and a fully learned MLP-based deformation field to capture complex
expressions. The two parts benefit each other, thereby our method can model
fine-grained dynamic details while ensuring expression accuracy. Furthermore,
we devise a well-designed geometry-guided initialization strategy based on
implicit SDF and Deep Marching Tetrahedra for the stability and convergence of
the training procedure. Experiments show our approach outperforms other
state-of-the-art sparse-view methods, achieving ultra high-fidelity rendering
quality at 2K resolution even under exaggerated expressions.Comment: Projectpage: https://yuelangx.github.io/gaussianheadavatar, Code:
https://github.com/YuelangX/Gaussian-Head-Avata
Yet another attack on a password authentication scheme based on quadratic residues with parameters unknown 1
In 1988, Harn, Laih and Huang proposed a password authentication scheme based on quadratic residues. However, in 1995, Chang, Wu and Laih pointed out that if the parameters d b a , , and l are known by the intruder, this scheme can be broken. In this paper, we presented another attack on the Harn-Laih-Huang scheme. In our attack, it doesn’t need to know the parameters and it is more efficient than the Chang-Wu-Laih attack
Characterization of Montmorillonite–Biochar Composite and Its Application in the Removal of Atrazine in Aqueous Solution and Soil
Atrazine is a widely used triazine herbicide, which poses a serious threat to human health and aquatic ecosystem. A montmorillonite–biochar composite (MMT/BC) was prepared for atrazine remediation. Biochar samples were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectrometer (XPS). Structural and morphological analysis of raw biochar (BC) and MMT/BC showed that MMT particles have been successfully coated on the surface of biochar. Sorption experiments in aqueous solution indicated that the MMT/BC has higher removal capacity of atrazine compared to BC (about 3.2 times). The sorption of atrazine on the MMT/BC was primarily controlled by both physisorption and chemisorption mechanisms. The amendment of MMT/BC increased the sorption capacity of soils and delayed the degradation of atrazine. Findings from this work indicate that the MMT/BC composite can effectively improve the sorption capacity of atrazine in aquatic environment and farmland soil and reduce the environmental risk.Characterization of Montmorillonite–Biochar Composite and Its Application in the Removal of Atrazine in Aqueous Solution and SoilpublishedVersio
Memory-enhancing effect of Rhodiola rosea L extract on aged mice
Purpose: The memory-enhancing effects of Rhodiola rosea L. extract (RRLE) on normal aged mice were assessed.Methods: In the open-field test, the effect of RRLE (150 and 300 mg/kg) on mouse locomotive activities was evaluated by investigating the extract’s influence on CAT and AchE activities in the brain tissue of mice.Results: Compared with aged group, high dose of RRLE reduced the total distance (3212.4 ± 123.1 cm, p < 0.05) significantly, increased catalase (CAT) activity (101.4 ± 12.2 U/mg pro, p < 0.05), and inhibited acetyl cholinesterase (AChE) activity (0.94 ± 0.12 U/mg pro, p < 0.05) in the brain tissue of aged mice.Conclusion: The results show that RRLE improves the memory functions of aged mice probably by increasing CAT activity while decreasing AChE activity.Keywords: Rhodiola rosea, Memory function, Catalase, Acetyl cholinesterase, Open-field tes
Efficient Commitment to Functional CD34+ Progenitor Cells from Human Bone Marrow Mesenchymal Stem-Cell-Derived Induced Pluripotent Stem Cells
The efficient commitment of a specialized cell type from induced pluripotent stem cells (iPSCs) without contamination from unknown substances is crucial to their use in clinical applications. Here, we propose that CD34+ progenitor cells, which retain hematopoietic and endothelial cell potential, could be efficiently obtained from iPSCs derived from human bone marrow mesenchymal stem cells (hBMMSC-iPSCs) with defined factors. By treatment with a cocktail containing mesodermal, hematopoietic, and endothelial inducers (BMP4, SCF, and VEGF, respectively) for 5 days, hBMMSC-iPSCs expressed the mesodermal transcription factors Brachyury and GATA-2 at higher levels than untreated groups (P<0.05). After culturing with another hematopoietic and endothelial inducer cocktail, including SCF, Flt3L, VEGF and IL-3, for an additional 7–9 days, CD34+ progenitor cells, which were undetectable in the initial iPSC cultures, reached nearly 20% of the total culture. This was greater than the relative number of progenitor cells produced from human-skin-fibroblast-derived iPSCs (hFib-iPSCs) or from the spontaneous differentiation groups (P<0.05), as assessed by flow cytometry analysis. These induced cells expressed hematopoietic transcription factors TAL-1 and SCL. They developed into various hematopoietic colonies when exposed to semisolid media with hematopoietic cytokines such as EPO and G-CSF. Hematopoietic cell lineages were identified by phenotype analysis with Wright-Giemsa staining. The endothelial potential of the cells was also verified by the confirmation of the formation of vascular tube-like structures and the expression of endothelial-specific markers CD31 and VE-CADHERIN. Efficient induction of CD34+ progenitor cells, which retain hematopoietic and endothelial cell potential with defined factors, provides an opportunity to obtain patient-specific cells for iPSC therapy and a useful model for the study of the mechanisms of hematopoiesis and drug screening
- …