236 research outputs found

    Effect of frictional heat dissipation on the loss of soil strength

    Get PDF
    In the present paper through a shear test on a fully saturated granular medium, simulated by the discrete element method, the effect of the heat produced by friction on the internal pore water pressure is explored. It is found that the dissipated energy is enough to increase the pore pressure and reduce the soil strength. In adiabatic and impermeable conditions the heat builds up quickly inside the shear band, and the softening is more pronounced. It is found as well that for real geological materials, heat conduction is not enough to reduce the pore pressure, and the softening prevails. Nevertheless, it is observed that the hydraulic conduction may mitigate or completely eliminate the temperature growth inside the shear band. This result provides new understanding on the thermodynamic factors involved in the onset of catastrophic landslides

    Neutron Transfer reactions induced by 8Li on 9Be

    Get PDF
    Angular distributions for the elastic scattering of 8Li on 9Be and the neutron transfer reactions 9Be(8Li,7Li)10Be and 9Be(8Li,9Li)8Be have been measured with a 27 MeV 8Li radioactive nuclear beam. Spectroscopic factors for 8Li|n=9Li and 7Li|n=8Li bound systems were obtained from the comparison between the experimental differential cross section and finite-range DWBA calculations with the code FRESCO. The spectroscopic factors obtained are compared to shell model calculations and to other experimental values from (d,p) reactions. Using the present values for the spectroscopic factor, cross sections for the direct neutron-capture reactions 7Li(n,g)8Li and 8Li(n,g)9Li were calculated in the framework of a potential model.Comment: 24 pages, 8 Figures, submitted as regular article to PR

    Speech-to-Speech synchronization protocol to classify human participants as high or low auditory-motor synchronizers

    Get PDF
    The ability to synchronize a motor action to a rhythmic auditory stimulus is often considered an innate human skill. However, some individuals lack the ability to synchronize speech to a perceived syllabic rate. Here, we describe a simple and fast protocol to classify a single native English speaker as being or not being a speech synchronizer. This protocol consists of four parts: the pretest instructions and volume adjustment, the training procedure, the execution of the main task, and data analysis

    Effect of the heating of the intergranular water on the softening of a shear band

    Get PDF
    When a landslide takes place, it is believed that a shear band of loose granular media acts as a lubricant between the descending block of soil and the basis on repose. The mechanism involved is known as softening: the granular skeleton looses its stiffness and the shear stress on the block is lost. In the hypothesis of Habib, the friction between grains heats the pore water, increasing its pressure and reducing the effective stress by the Terzagi criterion. Vardoulakis had constructed models on this hypothesis including thermal diffusion and Darcy’s law, plus a double dependence of the friction angle on the displacement and the velocity of the rolling block. Hereby we present a discrete element simulation of the process on a tilted shear band between two soil blocks: one bottom at rest and one upper at move. Soil blocks are assumed with uniform permeability and thermal conductivity. The shear band is modeled as a set of Voronoi polygons with elastic, frictional and damping forces between them. Pore water acts with hydrostatic pressure on the grains and on the upper and lower blocks, with a thermodynamic response that is reproduced by the Steam Tables provided by the International Association for the Properties of Water and Steam (IAPWS 97 report). At each time step, the forces on all grains are computed and all translational and rotational movements are integrated. Then, the heat is computed as the work done by all dissipative forces, distributing between water and grains according to their thermal capacities and increasing water temperature and pressure. Finally, this water pressure pushes the grains apart, reducing the shear stress on the upper block and speeding up the landslide. By this simulation procedure we obtain temperature increments on 10 C° that are strong enough to produce softening. Although the model is in two dimensions, it provides new insights on the study of catastrophic landslides evolutions

    Transfer/Breakup Modes in the 6He+209Bi Reaction Near and Below the Coulomb Barrier

    Full text link
    Reaction products from the interaction of 6He with 209Bi have been measured at energies near the Coulomb barrier. A 4He group of remarkable intensity, which dominates the total reaction cross section, has been observed. The angular distribution of the group suggests that it results primarily from a direct nuclear process. It is likely that this transfer/breakup channel is the doorway state that accounts for the previously observed large sub-barrier fusion enhancement in this system.Comment: 4 pages; 3 figure

    Alpha Particle Emission from6He + 209Bi

    Get PDF
    In a recent experiment, we have for the first time studied near-barrier and sub-barrier fusion of the exotic Borromean nucleus 6He with 209Bi and found that the sub-barrier fusion of this system is exceptionally enhanced, implying a 20% reduction in the nominal fusion barrier. It was suggested that this striking effect might he due to coupling to positive Q-value neutron transfer channels, leading to neutron flow and consequent neck formation between the projectile and target. The results of a new experiment using the radioactive nuclear beam facility at the University of Notre Dame to measure fast âș-particle emission from 6He + 209Bi are discussed. A exceptional1y strong transfer/breakup group was observed at near-barrier and sub-barrier energies; this is very likely to be the doorway state that explains the enhanced sub-barrier fusion. In a recent experiment, we have for the first time studied near-barrier and sub-barrier fusion of the exotic Borromean nucleus 6He with 209Bi and found that the sub-barrier fusion of this system is exceptionally enhanced, implying a 20% reduction in the nominal fusion barrier. It was suggested that this striking effect might he due to coupling to positive Q-value neutron transfer channels, leading to neutron flow and consequent neck formation between the projectile and target. The results of a new experiment using the radioactive nuclear beam facility at the University of Notre Dame to measure fast âș-particle emission from 6He + 209Bi are discussed. A exceptional1y strong transfer/breakup group was observed at near-barrier and sub-barrier energies; this is very likely to be the doorway state that explains the enhanced sub-barrier fusion

    Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells

    Get PDF
    The insulin/IGF-1 (insulin-like growth factor 1)-activated protein kinase Akt (also known as protein kinase B) phosphorylates Ser(487) in the ‘ST loop’ (serine/threonine-rich loop) within the C-terminal domain of AMPK-α1 (AMP-activated protein kinase-α1), leading to inhibition of phosphorylation by upstream kinases at the activating site, Thr(172). Surprisingly, the equivalent site on AMPK-α2, Ser(491), is not an Akt target and is modified instead by autophosphorylation. Stimulation of HEK (human embryonic kidney)-293 cells with IGF-1 caused reduced subsequent Thr(172) phosphorylation and activation of AMPK-α1 in response to the activator A769662 and the Ca(2+) ionophore A23187, effects we show to be dependent on Akt activation and Ser(487) phosphorylation. Consistent with this, in three PTEN (phosphatase and tensin homologue deleted on chromosome 10)-null tumour cell lines (in which the lipid phosphatase PTEN that normally restrains the Akt pathway is absent and Akt is thus hyperactivated), AMPK was resistant to activation by A769662. However, full AMPK activation could be restored by pharmacological inhibition of Akt, or by re-expression of active PTEN. We also show that inhibition of Thr(172) phosphorylation is due to interaction of the phosphorylated ST loop with basic side chains within the αC-helix of the kinase domain. Our findings reveal that a previously unrecognized effect of hyperactivation of Akt in tumour cells is to restrain activation of the LKB1 (liver kinase B1)–AMPK pathway, which would otherwise inhibit cell growth and proliferation

    The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity

    Get PDF
    addresses: Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America.notes: PMCID: PMC3161960types: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain

    Near- And Sub-barrier Fusion Of The Be7+ Ni58 System

    Get PDF
    Evaporation proton yields were measured for the fusion of the radioactive proton-rich nucleus Be-7 onto a Ni-58 target at six near-barrier energies. Total fusion cross sections were deduced by using calculated proton multiplicities. The resulting fusion excitation function shows a considerable enhancement with respect to calculations for a bare potential, even for energies above the Coulomb barrier. Inelastic couplings can account for the enhancement at the highest energy. Total fusion channels nearly saturate the total reaction cross section in the measured energy region. Comparison with previous results scaled appropriately for Be-7 + (Al-27, U-238) shows good agreement
    • 

    corecore