259 research outputs found

    Assessment of data processing to improve reliability of microarray experiments using genomic DNA reference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Using genomic DNA as common reference in microarray experiments has recently been tested by different laboratories. Conflicting results have been reported with regard to the reliability of microarray results using this method. To explain it, we hypothesize that data processing is a critical element that impacts the data quality.</p> <p>Results</p> <p>Microarray experiments were performed in a γ-proteobacterium <it>Shewanella oneidensis</it>. Pair-wise comparison of three experimental conditions was obtained either with two labeled cDNA samples co-hybridized to the same array, or by employing <it>Shewanella </it>genomic DNA as a standard reference. Various data processing techniques were exploited to reduce the amount of inconsistency between both methods and the results were assessed. We discovered that data quality was significantly improved by imposing the constraint of minimal number of replicates, logarithmic transformation and random error analyses.</p> <p>Conclusion</p> <p>These findings demonstrate that data processing significantly influences data quality, which provides an explanation for the conflicting evaluation in the literature. This work could serve as a guideline for microarray data analysis using genomic DNA as a standard reference.</p

    Biostatistical Considerations of the Use of Genomic DNA Reference in Microarrays

    Get PDF
    Using genomic DNA as common reference in microarray experiments has recently been tested by different laboratories (2, 3, 5, 7, 9, 20, 24-26). While some reported that experimental results of microarrays using genomic DNA reference conformed nicely to those obtained by cDNA: cDNA co-hybridization method, others acquired poor results. We hypothesized that these conflicting reports could be resolved by biostatistical analyses. To test it, microarray experiments were performed in a 4 proteobacterium Shewanella oneidensis. Pair-wise comparison of three experimental conditions was obtained either by direct cDNA: cDNA co-hybridization, or by indirect calculation through a Shewanella genomic DNA reference. Several major biostatistical techniques were exploited to reduce the amount of inconsistency between both methods and the results were assessed. We discovered that imposing the constraint of minimal number of replicates, logarithmic transformation and random error analyses significantly improved the data quality. These findings could potentially serve as guidelines for microarray data analysis using genomic DNA as reference

    Elevated CO2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers.

    Get PDF
    As two central issues of global climate change, the continuous increase of both atmospheric CO2 concentrations and global temperature has profound effects on various terrestrial ecosystems. Microbial communities play pivotal roles in these ecosystems by responding to environmental changes through regulation of soil biogeochemical processes. However, little is known about the effect of elevated CO2 (eCO2) and global warming on soil microbial communities, especially in semiarid zones. We used a functional gene array (GeoChip 3.0) to measure the functional gene composition, structure, and metabolic potential of soil microbial communities under warming, eCO2, and eCO2 + warming conditions in a semiarid grassland. The results showed that the composition and structure of microbial communities was dramatically altered by multiple climate factors, including elevated CO2 and increased temperature. Key functional genes, those involved in carbon (C) degradation and fixation, methane metabolism, nitrogen (N) fixation, denitrification and N mineralization, were all stimulated under eCO2, while those genes involved in denitrification and ammonification were inhibited under warming alone. The interaction effects of eCO2 and warming on soil functional processes were similar to eCO2 alone, whereas some genes involved in recalcitrant C degradation showed no significant changes. In addition, canonical correspondence analysis and Mantel test results suggested that NO3-N and moisture significantly correlated with variations in microbial functional genes. Overall, this study revealed the possible feedback of soil microbial communities to multiple climate change factors by the suppression of N cycling under warming, and enhancement of C and N cycling processes under either eCO2 alone or in interaction with warming. These findings may enhance our understanding of semiarid grassland ecosystem responses to integrated factors of global climate change

    Improving Non-English-Majored College Students&apos; Writing Skills: Combining a Know-Want-Learn Plus Model of Meta-Cognitive Writing Strategy Instruction and Internet-Based Language Laboratory Support

    Get PDF
    Abstract This paper reviewed a one-term experiment on integrating internet-based language laboratory (IBLL) in teaching writings kills with the know-want-learn (KWL) plus model to second-year nonEnglish-majored college students from Yangtze University. Subjects in this study consisted of 92 non-English-majored college students in the control group (CG) and 91 non-English-majored college students in the experimental group (EG). The results showed that 1) compared with a teacher-dominated approach for CG, internet-based language laboratory with KWL plus model of meta-cognitive writing strategy instruction for EG did a better job in enhancing students&apos; writing skills; 2) there were significant differences between males in CG and EG, and females in CG and EG; 3) students in EG held the positive response for the combined instruction

    Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Iron homeostasis is a key metabolism for most organisms. In many bacterial species, coordinate regulation of iron homeostasis depends on the protein product of a Fur gene. Fur also plays roles in virulence, acid tolerance, redox-stress responses, flagella chemotaxis and metabolic pathways.</p> <p>Results</p> <p>We conducted physiological and transcriptomic studies to characterize Fur in <it>Shewanella oneidensis</it>, with regard to its roles in iron and acid tolerance response. A <it>S. oneidensis</it><it>fur</it> deletion mutant was defective in growth under iron-abundant or acidic environment. However, it coped with iron depletion better than the wild-type strain MR-1. Further gene expression studies by microarray of the <it>fur</it> mutant confirmed previous findings that iron uptake genes were highly de-repressed in the mutant. Intriguingly, a large number of genes involved in energy metabolism were iron-responsive but Fur-independent, suggesting an intimate relationship of energy metabolism to iron response, but not to Fur. Further characterization of these genes in energy metabolism suggested that they might be controlled by transcriptional factor Crp, as shown by an enriched motif searching algorithm in the corresponding cluster of a gene co-expression network.</p> <p>Conclusion</p> <p>This work demonstrates that <it>S. oneidensis</it> Fur is involved in iron acquisition and acid tolerance response. In addition, analyzing genome-wide transcriptional profiles provides useful information for the characterization of Fur and iron response in <it>S. oneidensis</it>.</p

    Biases during DNA extraction affect characterization of the microbiota associated with larvae of the Pacific white shrimp, Litopenaeus vannamei

    Get PDF
    For in-depth characterization of the microbiota associated with shrimp larvae, careful selection of DNA isolation procedure is paramount for avoiding biases introduced in community profiling. Four E.Z.N.A.™ DNA extraction kits, i.e., Bacterial, Mollusc, Stool, and Tissue DNA Kits, abbreviated as Ba, Mo, St, and Ti, respectively, were initially evaluated with zoea 2 (Z2) larvae of the Pacific white shrimp (Litopenaeus vannamei) by 16S amplicon sequencing on a Illumina MiSeq platform. Further characterization of additional larval samples, specifically nauplii 5 (N5), mysis 1 (M1), and postlarvae 1 (P1), was performed with Ba and St kits to examine the changing microbiota profile during shrimp hatchery period. The results from the Z2 samples showed that DNA yields from the four kits varied significantly (P < 0.05), whereas no significant differences were detected in the α-diversity metrics of the microbiota. By contrast, the St kit, with the lowest DNA yield and quality, successfully recovered DNA from Gram-positive and gut-associated bacterial groups, whereas the Ba kit, which showed maximal microbiota similarity with the Mo kit, manifested the best reproducibility. Notably, significant differences were observed in relative abundances of most dominant taxa when comparing results from the Ba and St kits on Z2, M1, and P1 samples. In addition, the bacterial community identified shifted markedly with larval development regardless of the DNA extraction kits. The DNA recovery biases arising from the larval microbiota could be due to different protocols for cell lysis and purification. Therefore, combined application of different DNA extraction methods may facilitate identification of some biologically important groups owing to their complementary effects. This approach should receive adequate attention for a thorough understanding of the larvae-associated microbiota of the penaeid shrimp

    Plant-microbe networks in soil are weakened by century-long use of inorganic fertilizers.

    Get PDF
    Understanding the changes in plant-microbe interactions is critically important for predicting ecosystem functioning in response to human-induced environmental changes such as nitrogen (N) addition. In this study, the effects of a century-long fertilization treatment (&gt; 150 years) on the networks between plants and soil microbial functional communities, detected by GeoChip, in grassland were determined in the Park Grass Experiment at Rothamsted Research, UK. Our results showed that plants and soil microbes have a consistent response to long-term fertilization-both richness and diversity of plants and soil microbes are significantly decreased, as well as microbial functional genes involved in soil carbon (C), nitrogen (N) and phosphorus (P) cycling. The network-based analyses showed that long-term fertilization decreased the complexity of networks between plant and microbial functional communities in terms of node numbers, connectivity, network density and the clustering coefficient. Similarly, within the soil microbial community, the strength of microbial associations was also weakened in response to long-term fertilization. Mantel path analysis showed that soil C and N contents were the main factors affecting the network between plants and microbes. Our results indicate that century-long fertilization weakens the plant-microbe networks, which is important in improving our understanding of grassland ecosystem functions and stability under long-term agriculture management

    Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy

    Get PDF
    This study examined the microbial diversity and community assembly of oral microbiota in periodontal health and disease and after nonsurgical periodontal treatment. The V4 region of 16S rRNA gene from DNA of 238 saliva and subgingival samples of 21 healthy and 48 diseased subjects was amplified and sequenced. Among 1979 OTUs identified, 28 were overabundant in diseased plaque. Six of these taxa were also overabundant in diseased saliva. Twelve OTUs were overabundant in healthy plaque. There was a trend for disease-associated taxa to decrease and health-associated taxa to increase after treatment with notable variations among individual sites. Network analysis revealed modularity of the microbial communities and identified several health- and disease-specific modules. Ecological drift was a major factor that governed community turnovers in both plaque and saliva. Dispersal limitation and homogeneous selection affected the community assembly in plaque, with the additional contribution of homogenizing dispersal for plaque within individuals. Homogeneous selection and dispersal limitation played important roles, respectively, in healthy saliva and diseased pre-treatment saliva between individuals. Our results revealed distinctions in both taxa and assembly processes of oral microbiota between periodontal health and disease. Furthermore, the community assembly analysis has identified potentially effective approaches for managing periodontitis

    Knock-out of SO1377 gene, which encodes the member of a conserved hypothetical bacterial protein family COG2268, results in alteration of iron metabolism, increased spontaneous mutation and hydrogen peroxide sensitivity in Shewanella oneidensis MR-1

    Get PDF
    BACKGROUND: Shewanella oneidensis MR-1 is a facultative, gram-negative bacterium capable of coupling the oxidation of organic carbon to a wide range of electron acceptors such as oxygen, nitrate and metals, and has potential for bioremediation of heavy metal contaminated sites. The complete 5-Mb genome of S. oneidensis MR-1 was sequenced and standard sequence-comparison methods revealed approximately 42% of the MR-1 genome encodes proteins of unknown function. Defining the functions of hypothetical proteins is a great challenge and may need a systems approach. In this study, by using integrated approaches including whole genomic microarray and proteomics, we examined knockout effects of the gene encoding SO1377 (gi24372955), a member of the conserved, hypothetical, bacterial protein family COG2268 (Clusters of Orthologous Group) in bacterium Shewanella oneidensis MR-1, under various physiological conditions. RESULTS: Compared with the wild-type strain, growth assays showed that the deletion mutant had a decreased growth rate when cultured aerobically, but not affected under anaerobic conditions. Whole-genome expression (RNA and protein) profiles revealed numerous gene and protein expression changes relative to the wild-type control, including some involved in iron metabolism, oxidative damage protection and respiratory electron transfer, e. g. complex IV of the respiration chain. Although total intracellular iron levels remained unchanged, whole-cell electron paramagnetic resonance (EPR) demonstrated that the level of free iron in mutant cells was 3 times less than that of the wild-type strain. Siderophore excretion in the mutant also decreased in iron-depleted medium. The mutant was more sensitive to hydrogen peroxide and gave rise to 100 times more colonies resistant to gentamicin or kanamycin. CONCLUSION: Our results showed that the knock-out of SO1377 gene had pleiotropic effects and suggested that SO1377 may play a role in iron homeostasis and oxidative damage protection in S. oneidensis MR-1
    • …
    corecore