485 research outputs found

    Evaluation of ANN Estimation-Based MPPT Control for a DFIG Wind Turbine

    Get PDF
    This paper proposes an artificial neuronal network (ANN) estimation-based wind speed sensolress MPPT algorithm for wind turbines equipped with doubly-fed induction generators (DFIG). The ANN is designed to produce the optimal control signal for the DFIG power or speed controller. The optimal parameters of the ANN are determined by using a particle swarm optimization (PSO) algorithm. A 3.6 MW DFIG wind turbine is simulated in PSCAD to evaluate and compare the proposed MPPT method with the traditional tip speed ratio (TSR) and turbine power profile-based MPPT methods in both the speed control and power control modes in variable wind speed conditions

    RECHARGEABLE MULTI-CELL BATTERY

    Get PDF
    A method for power management of a multi - cell battery includes identifying a desired power value and voltage value , determining a battery voltage value and a battery current value for a battery , determining a number of battery banks from a plurality of battery banks to use for the battery , where each battery bank includes one or more battery cells ( or battery modules ) , checking availability of each of the one or more battery cells ( or battery modules ) , selecting one or more battery banks from the plurality of battery banks , where the selection of a battery bank is based on the availability of the battery cells ( or battery modules ) included in the battery pack , and a quantity of the selected battery banks is equal to the determined number of battery banks , and connecting the available battery cells ( or battery mod ules ) in the selected one or more battery banks to form the battery

    Power Electronics-Enabled Self-X Multicell Batteries: A Design Toward Smart Batteries

    Get PDF
    The traditional multicell battery design usually employs a fixed configuration to connect multiple cells in series and in parallel during operation in order to achieve the required voltage and current. However, this fixed configuration results in low reliability, low fault tolerance, and non-optimal energy conversion efficiency. This paper proposes a novel power electronics-enabled self-X, multicell battery design. The proposed multicell battery can automatically configure itself according to the dynamic load/storage demand and the condition of each cell. The proposed battery can self-heal from failure or abnormal operation of single or multiple cells, self-balance from cell state variations, and self-optimize to achieve optimal energy conversion efficiency. These features are achieved by a new cell switching circuit and a high performance battery management system proposed in this paper. The proposed design is validated by simulation and experiment for a 6 Ă— 3 cell polymer lithium-ion battery. The proposed design is universal and can be applied to any type and size of battery cells

    Online State of Charge and Electrical Impedance Estimation for Multicell Lithium-ion Batteries

    Get PDF
    This paper proposes a hybrid battery model-based high-fidelity state of charge (SOC) and electrical impedance estimation method for multicell lithium-ion batteries. The hybrid battery model consists of an enhanced Coulomb counting algorithm for SOC estimation and an electrical circuit battery model. A particle swarm optimization (PSO)-based online parameter identification algorithm is designed to estimate the electrical parameters of the cells sequentially. An SOC compensator is designed to correct the errors of the enhanced Coulomb counting SOC estimations for the cells sequentially. This leads to an accurate, robust online SOC estimation for individual cells of a battery pack. The proposed method is validated by simulation and experimental data collected from a battery tester for a four-cell polymer lithiumion battery pack. The proposed method is applicable to other types of electrochemical batteries

    A Series-Connected Self-Reconfigurable Multicell Battery Capable of Safe and Effective Charging/Discharging and Balancing Operations

    Get PDF
    Bidirectional DC/DC converters are commonly used for charging and discharging multicell batteries under various modes, such as Pulsed Current (PC), Constant Current (CC), and Constant Current Constant Voltage (CCCV). The charge and discharge are usually terminated by the converters when battery voltages reach some threshold values. However, cell state imbalance is commonly present in traditional multicell batteries, which reduces the available capacities of the batteries in certain charge/discharge cycles and shortens the life cycles of the batteries. To solve this problem, this paper proposes a series-connected, self-reconfigurable, multicell battery with a bidirectional DC/DC converter capable of safe and effective charging, discharging, and balancing operations. The DC/DC converter uses a unified Constant Current Adaptive Voltage (CCAV) control scheme, which can fully charge each cell of the battery without damage as well as discharge the battery safely. Moreover, with the proposed design, balancing and self-healing can be achieved during operation. This enhances the reliability and energy conversion efficiency of the battery. The proposed design is validated by simulation studies for a six-cell, series connected, lithium-ion battery pack. The proposed design is universal and can be applied to any types of batteries

    SCALABLE UNIVERSAL SPACE VECTOR PULSE WIDTH MODULATION SCHEME FOR MULTILEVEL INVERTERS

    Get PDF
    A scalable universal space vector pulse-width modulation (SVPWM) scheme for multilevel inverters is disclosed. In the disclosed SVPWM scheme, the modulation triable is quickly identified based on a coordinate transformation from an α-β coordinate system to a 120o oblique coordinate system. Then, the duty cycles and switching states of the three vertices of the modulation triangle are determined by simple algebraic computations. In a switching period, any vertex of the modulation triangle can be flexibly selected as the start point to optimize the switching sequence with flexibly adjustable duty cycle(s) for the redundant switching state(s) according to specific applications

    Monitoring Aging of Power Semiconductor Devices Based on Case Temperature

    Get PDF
    The aging of an electronic component in an electronic power converter can be monitored based on two or more case temperature measurements. A power electronic device is enclosed in a package having a baseplate, in which the power electronic device generates heat during operation and the baseplate transfers heat to a heat dissipating device or a cooling device. Sensors measure temperatures at first and second locations on a surface of the baseplate. A data processor calculates a value for a first parameter based on the temperatures at the first and second locations, in which the first parameter is indicative of an aging process of the power electronic device, and generates a first signal based on mined threshold. The data processor calculates a value for a second parameter based on the first parameter value, a predetermined look-up table, and the temperatures at the first and second locations, in which the second parameter is indicative of another aging process of the semiconductor switching devices, and generates a second signal based on a comparison of the calculated value and a second predetermined threshold

    DIRECT TORQUE CONTROL OF AC ELECTRIC MACHINES

    Get PDF
    This disclosure features an apparatus including a motor controller to generate control signals to control an electric motor. The motor controller includes a first saturation controller to generate a first saturation controller output based on feedback signals associated with the electric motor. The motor controller further includes a duty ratio modulator coupled to the first saturation controller. The duty ratio modulator is configured to determine activation times for a set of voltage vectors based on the first saturation controller output. The motor controller is configured to generate, at each switching cycle, a control signal based on the set of voltage vectors and the activation times for the set of voltage vectors, and provide the control signal for controlling the electric motor

    RECHARGEABLE MULTI - CELL BATTERY

    Get PDF
    A method for power management of a multi-cell battery includes identifying a desired power value and voltage value, determining a battery voltage value and a battery current value for a battery, determining a number of battery banks from a plurality of battery banks to use for the battery, where each battery bank includes one or more battery cells (or battery modules), checking availability of each of the one or more battery cells (or battery modules), selecting one or more battery banks from the plurality of battery banks, where the selection of a battery bank is based on the availability of the battery cells (or battery modules) included in the battery pack, and a quantity of the selected battery banks is equal to the determined number of battery banks, and connecting the available battery cells (or battery mod ules) in the selected one or more battery banks to form the battery

    A Discrete-Time Direct-Torque Control for Direct-Drive PMSG-Based Wind Energy Conversion Systems

    Get PDF
    This paper proposes a novel flux space vector-based direct-torque control (DTC) scheme for permanent magnet synchronous generators (PMSGs) used in variable-speed direct drive wind energy conversion systems (WECSs). The discrete time control law, which is derived from the perspective of flux space vectors and load angle, predicts the desired stator flux vector for the next time-step with the torque and stator flux information only. The space-vector modulation (SVM) is then employed to generate the reference voltage vector, leading to a fixed switching frequency as well as lower flux and torque ripples when compared to the conventional DTC. Compared with other SVM-based DTC methods in the literature, the proposed DTC scheme eliminates the use of PI regulators and is less dependent on machine parameters, e.g., stator inductances and permanent magnet flux linkage, while the main advantages of the DTC, e.g., fast dynamic response and no need of coordinate transform, are preserved. The proposed DTC scheme is applicable for both nonsalient-pole and salient-pole PMSGs. The overall control scheme is simple to implement and is robust to parameter uncertainties and variations of the PMSGs. The effectiveness of the proposed discrete-time DTC scheme is verified by simulation and experimental results on a 180 W salient-pole PMSG and a 2.4-kW nonsalient-pole PMSG used in variable-speed direct-drive WECSs
    • …
    corecore