University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Faculty Publications from the Department of Electrical & Computer Engineering, Department of of

2017

DIRECT TORQUE CONTROL OF AC ELECTRIC MACHINES

Wei Qiao Lincoln, NE, wqiao@engr.unl.edu

Zhe Zhang *Henan*

Liyan Qu Lincoln, NE

Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Qiao, Wei; Zhang, Zhe; and Qu, Liyan, "DIRECT TORQUE CONTROL OF AC ELECTRIC MACHINES" (2017). *Faculty Publications from the Department of Electrical and Computer Engineering*. 536. https://digitalcommons.unl.edu/electricalengineeringfacpub/536

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

US009831812B2

(12) United States Patent

Qiao et al.

(54) DIRECT TORQUE CONTROL OF AC ELECTRIC MACHINES

- (71) Applicant: NUtech Ventures, Lincoln, NE (US)
- Inventors: Wei Qiao, Lincoln, NE (US); Zhe Zhang, Henan (CN); Liyan Qu, Lincoln, NE (US)
- (73) Assignee: NUtech Ventures, Lincoln, NE (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 15/055,289
- (22) Filed: Feb. 26, 2016

(65) Prior Publication Data

US 2016/0254771 A1 Sep. 1, 2016

Related U.S. Application Data

- (60) Provisional application No. 62/126,355, filed on Feb. 27, 2015.
- (51) Int. Cl. *H02P 21/00* (2016.01) *H02P 21/30* (2016.01)

(Continued)

(10) Patent No.: US 9,831,812 B2

(45) **Date of Patent:** Nov. 28, 2017

(56) **References Cited**

U.S. PATENT DOCUMENTS

4,678,248	Α		7/1987	Depenbroc	:k	
4,703,245	А	*	10/1987	Sakamoto		H02P 25/024
						318/723

(Continued)

FOREIGN PATENT DOCUMENTS

CN	101577517 A	*	11/2009
CN	103973192 A	*	8/2014
CN	104201957 A	*	12/2014

OTHER PUBLICATIONS

Buja and Kazmierlowski, "Direct torque control of PWM inverter fed AC motors—a survey," IEEE Trans. Indus. Electronics, 2004, 51(4):744-757.

(Continued)

Primary Examiner — Rita Leykin

(74) Attorney, Agent, or Firm - Fish & Richardson P.C.

(57) ABSTRACT

This disclosure features an apparatus including a motor controller to generate control signals to control an electric motor. The motor controller includes a first saturation controller to generate a first saturation controller output based on feedback signals associated with the electric motor. The motor controller further includes a duty ratio modulator coupled to the first saturation controller. The duty ratio modulator is configured to determine activation times for a set of voltage vectors based on the first saturation controller output. The motor controller is configured to generate, at each switching cycle, a control signal based on the set of voltage vectors and the activation times for the set of voltage vectors, and provide the control signal for controlling the electric motor.

91 Claims, 19 Drawing Sheets

- (51) Int. Cl. *H02P 21/20* (2016.01) *H02P 21/14* (2016.01)
- (58) Field of Classification Search
 CPC H04B 3/548; H02M 5/293; H02P 21/0003; H02P 21/141; H02P 21/20; H02P 21/30; H02P 27/06; H02P 21/14; H02P 9/02; H02P 21/089; H02P 25/08; H02P 25/22; F02N 11/04; F02N 2300/104; B60L 15/025; Y02T 10/643; G01L 3/102; G01L 3/105
 USPC 318/400.02, 701, 400.17, 798, 805, 812, 318/400.15, 724; 307/1; 363/37, 123, 363/131; 700/286, 90, 296; 703/19, 2; 290/40 F, 40 A, 24, 40 B, 40 C, 40 D;

324/225, 253

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

5,334,923	A *	8/1994	Lorenz H02P 6/187
			318/805
5,629,597	A *	5/1997	Imanaka H02P 21/16
			318/805
5.734.249	Α	3/1998	Pohialainen et al.
5,796,235	A *	8/1998	Schrodl H02P 6/185
0,000,200	••		318/400 11
6 246 197	B1 *	6/2001	Kurishige B62D 5/046
0,240,177	DI	0/2001	190/442
6 712 000	D2*	2/2004	180/443 E02N 11/04
0,/13,888	B2 *	3/2004	Kajiura FUZN 11/04
			290/40 A
6,806,687	B2 *	10/2004	Kajiura F02N 11/04
			290/40 A
6,809,492	B2 *	10/2004	Harakawa H02P 21/22
			318/603
7,141,943	B2 *	11/2006	Song H02P 6/28
			318/400.04
7 155 327	B2 *	12/2006	Hamamoto B62D 5/0466
1,100,021	02	12 2000	180/410
7 242 006	D2*	7/2007	Dichards C06E 17/5026
7,245,000	$\mathbf{D}\mathbf{Z}^{-1}$	1/2007	Ale and a second and a second
7 200 000	D2 *	10/2007	D: 1 1 COCE 17/5026
7,286,906	B2 *	10/2007	Richards G06F 17/5036
			700/286
7,304,444	B2 *	12/2007	Takano B60L 11/1851
			180/65.1
7,564,204	B2 *	7/2009	Ogino H02P 7/2913
			318/400.01
7.592.785	B2 *	9/2009	Kimura B60L 15/025
.,,			322/28
7 746 039	B2 *	6/2010	Hoffmann H02P 21/12
7,710,055	102	0,2010	219/200
8 207 602	D1*	6/2012	Ualmhara D66D 1/505
8,207,092	D2 ·	0/2012	Holiliberg BooD 1/303
	Do de		114/230.1
8,436,558	B2 *	5/2013	Holmberg B66D 1/505
			114/213
8,453,770	B2 *	6/2013	Tang B60L 15/2036
			180/65.1
8,674,647	B2 *	3/2014	Iwaji B60L 15/025
			318/400.01
8.737.103	B2 *	5/2014	Kieferndorf H02M 1/14
0,101,100			363/131
8 761 985	B2 *	6/2014	Tang B60I 15/2036
0,701,905	D2	0/2014	120/65 1
0 020 021	D1*	0/2014	Vaa U02D 21/16
0,029,031	D 2 ·	9/2014	100 1102F 21/10
0.055.041	D2 *	0/0015	318/400.02
8,975,841	B2 *	3/2015	Maekawa H02P 21/14
			318/400.02
9,007,004	B2 *	4/2015	Hunter H02P 21/0003
			318/400.02
9,059,650	B2 *	6/2015	Huang H02P 6/165
9,197,152	B2 *	11/2015	Jebai H02P 6/185

9,219,424	B2 *	12/2015	Inomata H02M 5/293
9,225,270	B2 *	12/2015	Takahashi H02P 21/10
9,281,772	B2 *	3/2016	Wang H02P 21/141
9,344,026	B2 *	5/2016	Tang H02P 21/06
9,369,080	B2 *	6/2016	Ahmad H02P 23/14
9,391,546	B2 *	7/2016	Xia H02P 6/10
9,407,189	B2 *	8/2016	Tang H02P 6/10
9,431,951	B2 *	8/2016	Tang H02P 27/06
9,444,384	B2 *	9/2016	Tang H02P 21/30
9,502,905	B2 *	11/2016	Yamaguchi H02J 4/00
2001/0007416	A1*	7/2001	Koide H02P 6/12
			318/701
2007/0107973	A1*	5/2007	Jiang B62D 5/046
			180/443
2011/0231066	A1*	9/2011	Ohno B62D 5/046
			701/42
2012/0153881	A1*	6/2012	Parenti H02P 21/0089
			318/400.02
2013/0095978	A1*	4/2013	Sauter A63B 21/0059
			482/4
2013/0241445	A1*	9/2013	Tang
2010/02/11/10			318/52
2014/0203754	A1*	7/2014	Bhangu H02P 23/009
2011/0203731		112011	318/702
2015/0032423	A 1 *	1/2015	Tang G06E 17/5009
2015/0052425	71	1/2015	703/2
2015/0180308	A 1 *	6/2015	Tang $H02P 23/14$
2013/0100398	Л	0/2015	1811g 11021 23/14
2015/0236603	A 1 *	8/2015	Jimichi H02M 5/202
2015/0250005	AT.	0/2013	262/27
			303/37

OTHER PUBLICATIONS

Casadei et al., "FOC and DTC: Two viable schemes for induction motors torque control," IEEE Trans. Power Electronics, 2002, 17(5):779-787.

Habetler et al., "Direct torque control of induction machines using space vector modulation," IEEE Trans. Industry Applications, 1992, 28(5):1045-1053.

Kenny and Lorenz, "Stator- and rotor-flux-based deadbeat direct torque control of induction machines," IEEE Trans. Industry Applications, 2003, 39(4):1093-1101.

Lee et al., "Deadbeat-direct torque and flux control of interior permanent magnet synchronous machines with discrete time stator current and stator flux linkage observer," IEEE Trans. Industry Applications, 2011, 47(4):1749-1758.

Ren et al., "Direct torque control of permanent-magnet synchronous machine drives with a simple duty ratio regulator." Industrial Electronics, IEEE Transactions on 61.10, 2014, 5249-5258.

Garcia et al., "Comparison Between FOC and DTC Strategies for Permanent Magnet Synchronous Motors," Advances in Electrical and Electronic Engineering, 2006, 76-81.

Habetler et al., "Direct Torque Control of Induction Machines Using Space Vector Modulation," IEEE Transactions on Industry Applications, Sep./Oct. 1992, 28: 1045-1053.

Loncarski, Peak-to-Peak Output Current Ripple Analysis in Multiphase and Multilevel Inverters, Chapter 2: Analysis of the Current Ripple in Three-Phase Two-Level VSIs, 2014, pp. 5-31. Martins et al., "Switching frequency imposition and ripple reduction in DTC drives by using a multilevel converter," IEEE Trans. Power Electronics, 2002, 17(2):286-297.

Preindl and Bolognani, "Model predictive direct torque control with finite control set for PMSM drive systems, Part 1: maximum torque per ampere operation," IEEE Trans. Industrial Informatics, 2013 9(4):1912-1921.

Tang et al., "A novel direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque and fixed switching frequency," IEEE Trans. Power Electronics, 2004, 19(2):346-354.

Vas, "Sensorless Vector and Direct Torque Control," New York: Oxford University Press, 1998, pp. 521.

Zhang et al., "Three-Dimensional Space Vector Modulation for Four-Leg Voltage-Source Converters," IEEE Transactions on Power Electronics, May 2002, 17: 314-326.

(56) **References Cited**

OTHER PUBLICATIONS

Zhong et al., "Analysis of direct torque control in permanent magnet synchronous motor drives," IEEE Trans. Power Electronics, 1997, 12(3):528-536.

* cited by examiner

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

FIG. 4A

FIG. 4C

FIG. 4E

FIG. 4F

Phase b reference sugget Carries					jisi.	Phase 5 gence_signal		ę	Came
PI referes	Phase a A			, signal	refer	mase signal	66,,,,,,,,,,,,,, 	\sim	i signal
Phase	NEUX)				refens	hase a fice isignal			\sum
			1				}	1	
<i>v</i> ,	Possi	Poch2	Vach	4	F 7	Vaci2	V seed	Poch	14
Sa.]		 S _d		1 1 1	1 1 1	
ί ί \$λ	L]		S&	L		; ;	
\$ } }					42 72			1 1 1	
Sc.	1				Sc		l	J	
{ } *		T_s (Sec	:tor 1)					ector 2)	*

DIRECT TORQUE CONTROL OF AC ELECTRIC MACHINES

CROSS REFERENCE TO RELATED APPLICATIONS

Pursuant to 35 USC §119(e), this application claims the benefit of prior U.S. Provisional Application 62/126,355, filed on Feb. 27, 2015. The above application is incorporated by reference in its entirety.

FEDERALLY SPONSORED RESEARCH

This invention was made with government support under ECCS-0901218 and ECCS-0954938 awarded by the ¹⁵ National Science Foundation. The government has certain rights in the invention.

TECHNICAL FIELD

This invention relates to AC electric machines, and more particularly to direct torque control of AC electric machines.

BACKGROUND

Variable-frequency motor drive systems control motor speed and torque of an electric motor. Such drive systems are widely used in power electronics applications. The drive system implemented depends on characteristics of the application, such as sampling frequency, load requirements, and ³⁰ speed requirements. One technique to control the torque of electric motor drive systems is direct torque control (DTC), which uses a closed-loop control scheme. In contrast to field oriented control (FOC), DTC directly controls the electromagnetic torque and stator flux linkage. In a discrete or ³⁵ digital system, hysteresis thresholds and sampling periods affect the performance of the DTC system.

SUMMARY

In one aspect, an apparatus includes a motor controller to generate control signals to control an electric motor. The motor controller includes a first saturation controller output based on feedback signals associated with the electric motor. The motor controller further includes a duty ratio modulator coupled to the first saturation controller. The duty ratio modulator is configured to determine activation times for a set of voltage vectors based on the first saturation controller output. The motor controller is configured to generate, at each switching cycle, a control signal based on the set of voltage vectors, and provide the control signal for controlling the electric motor.

In another aspect, a method of controlling an electric motor system includes determining activation times for a set 55 of voltage vectors based on a first saturation controller output. The method further includes generating, at each switching cycle, a control signal to control an electric motor based on the set of voltage vectors and the activation times for the set of voltage vectors. 60

In a further aspect, an apparatus includes a motor controller to generate control signals to control an electric motor. The motor controller includes a torque and stator flux estimator to estimate, based on a feedback current and a feedback voltage associated with the electric motor, an 65 estimated torque and an estimated stator flux of the electric motor. The motor controller further includes a first saturation

controller that receives a torque error representing a difference between the estimated torque and a reference torque and generates a first saturation controller output based on the torque error. The motor controller also includes a second saturation controller that receives a flux error representing a difference between the estimated stator flux and a reference stator flux and generates a second saturation controller output based on the flux error. At each switching cycle, the motor controller generates a control signal based at least on the first saturation controller output, the second saturation controller output, and voltage vectors, and provides the control signal for controlling the electric motor.

In yet another aspect, a method of controlling an electric motor system includes estimating, based on a feedback current and a feedback voltage from an electric motor of the electric motor system, an estimated torque and an estimated stator flux. The method further includes generating a first saturation controller output based on a torque error representing a difference between the estimated torque and a 20 reference torque, and generating a second saturation controller output based on a flux error representing a difference between the estimated stator flux and a reference stator flux. The method also includes generating, at each switching cycle, a control signal to control the electric motor based at 25 least on the first saturation controller output, the second saturation controller output, and voltage vectors to apply to the electric motor.

In a further aspect, an apparatus includes an electric motor and a controller means for generating control signals to control the electric motor. The controller means includes means for estimating, based on a feedback current and a feedback voltage from the electric motor, an estimated torque and an estimated stator flux of the electric motor. The controller means includes means for receiving a torque error representing a difference between the estimated torque and a reference torque, and generating a first saturation controller output based on the torque error. The controller means further includes means for receiving a flux error representing a difference between the estimated stator flux and a reference stator flux, and generating a second saturation controller output based on the flux error. The control signals are generated based at least on the torque error, the flux error, and a table entry selected from a switching table containing information on a plurality of voltage vectors to apply to the electric motor.

Implementations can include one or more of the features described below and herein elsewhere.

In some examples, the apparatus can further include the electric motor. The electric motor can be an alternating current motor.

In some examples, the first saturation controller can be configured to generate the saturation controller output based on a difference between an estimated torque of the electric motor and a reference torque.

In some examples, the duty ratio modulator can be configured to determine the activation times for the set of voltage vectors based on a hysteresis controller output and the saturation controller output.

In some examples, the feedback signals can be represen-60 tative of a voltage and a current applied to the electric motor.

In some examples, the motor controller can include a switching table containing sets of voltage vectors. The switching table can be configured to select the set of voltage vectors based on the feedback signals. The motor controller can further include a hysteresis controller configured to generate a hysteresis controller output based on the feedback signals. The switching table can be configured to select the

set of voltage vectors based on the hysteresis controller output. The apparatus can further include an estimator to estimate a torque of the electric motor and a stator flux of the electric motor based on the feedback signals. The switching table can be configured to select the set of voltage vectors 5 based on a position of the stator flux within a sector of a stationary reference frame.

In some examples, the set of vectors can include at least two active vectors. The set of vectors can include at least one passive vector. The set of vectors can include at least two 10 passive vectors. The duty ratio modulator can be configured to select a first activation time of a first passive vector and a second activation time of a second passive vector based on a predetermined weighting factor.

In some examples, the motor controller can include a 15 second saturation controller to generate a second saturation controller output based on the feedback signals. The duty ratio modulator can be further connected to the second saturation controller. The duty ratio modulator can be configured to determine the activation times for the set of 20 voltage vectors based on the first saturation controller output and the second saturation controller output. The second saturation controller can be configured to generate the second saturation controller output based on a difference between an estimated stator flux of the electric motor and a 25 reference stator flux.

In some examples, the apparatus includes an inverter coupled to the electric motor. The motor controller can be configured to apply the control signal to the inverter to place the inverter in one of a plurality of inverter states. Each 30 inverter state can correspond to one voltage vector among the set of voltage vectors. The inverter can be in each inverter state for a corresponding activation time.

In some examples, the method further includes generating the first saturation controller output based on a difference 35 between an estimated torque of the electric motor and a reference torque.

In some examples, generating the control signal to control the electric motor can include causing an alternating current to be delivered to the electric motor.

In some examples, the method further includes receiving feedback signals indicative of a voltage and a current applied to the electric motor. The method can also include generating the saturation controller output based on the feedback signals. The method can also include selecting the 45 set of voltage vectors from predefined sets of voltage vectors based on the feedback signals. The method can include estimating a torque and a stator flux based on the feedback signals. Selecting the set of voltage vectors can include selecting the set of voltage vectors based on a position of the 50 stator flux within a sector of a stationary reference frame. The method can include generating a hysteresis controller output based on the feedback signals. Selecting the set of voltage vectors can include selecting the set of voltage vectors based on the hysteresis controller output. 55

In some examples, determining activation times for the set of voltage vectors can include determining a first activation time of a first passive vector and a second activation time of a second passive vector based on a predetermined weighting factor.

In some examples, determining the activation times can include determining the activation times for the set of voltage vectors based on the first saturation controller output and a second saturation controller output. The method can further include generating the second saturation controller ⁶⁵ output based on a difference between an estimated stator flux of the electric motor and a reference stator flux. 4

In some examples, the method can further include applying the control signal to an inverter to place the inverter in one of a plurality of inverter states. Each inverter state can correspond to one voltage vector among the set of voltage vectors. The inverter can be in each inverter state for a corresponding activation time.

In some examples, the voltage vectors or the set of voltage vectors can include a zero voltage vector and two or more active voltage vectors. The voltage vectors or the set of voltage vectors can include two or more zero voltage vectors.

In some examples, the motor controller can modulate an output voltage based on a duty ratio vector. The method can include modulating an output voltage based on a duty ratio vector. The duty ratio vector can be a linear combination of the zero voltage vector and the active voltage vectors. Coefficients of the linear combination can be determined from the first saturation controller output and the second saturation controller output. Elements of the duty ratio vector can correspond to activation times of the zero voltage vector and the active voltage vectors.

In some examples, the motor controller can include a torque comparator that receives the torque error and generates a torque comparator output. The method can include generating a torque comparator output based on the torque error, the torque comparator output having a low state and a high state. The torque comparator output can have a low state or a high state. If the torque comparator output has the low value, the voltage vectors can be configured to cause the torque of the electric motor to be decreased. If the torque comparator output has the high value, the voltage vectors can be configured to cause the torque of the electric motor to be increased. In some cases, the motor controller can be configured to select a table entry from a table based on the torque comparator output. The method can include selecting a table entry from a table based on the torque comparator output. The table can have two or more table entries each 40 having a set of voltage vectors. At least one of the table entries can correspond to the voltage vectors. The estimated stator flux can be located within a sector of a stationary reference frame. In some cases, the motor controller can select the table entry based on the sector within which the estimated stator flux is located. The method can include selecting the table entry based on a sector of a stationary reference frame within which the estimated stator flux is located. The stationary reference frame can include six sectors defined by the plurality of voltage vectors. The motor controller can select the table entry from one of twelve available table entries.

In some examples, the first saturation controller output can increase linearly from a low value to a high value as the torque error increases. The first saturation controller output can be normalized such that the low value is zero and the high value is one.

In some examples, the second saturation controller output can linearly increase from a low value to a high value as the stator flux error increases. The second saturation controller output can be normalized such that the low value is zero and the high value is one.

In some examples, the motor controller can deliver the control signals to an inverter operable with the electric motor.

In some examples, a low value of the first saturation controller output can be determined based on a rotor speed of the electric motor.

50

55

In some examples, a low value of the second saturation controller output can be set such that a magnitude of the estimated stator flux is substantially constant.

In some examples, an electric vehicle includes the electric motor and the motor controller. The method can include controlling the electric motor to control a speed or acceleration of the electric vehicle.

In some examples, an industrial motor drive system can include the electric motor and the motor controller.

In some examples, the method can include generating a torque comparator output based on the torque error. The torque comparator output can have a low state and a high state.

In some examples, the method can include delivering the 15 control signals to an inverter operable with the electric motor.

Implementations can include one or more of the advantages described below and herein. The motor controller may facilitate fast dynamic response for the electric motor at a 20 low computational cost for the motor controller. The apparatus can further control the electric motor at low sampling frequencies while persevering waveform fidelity of the torque and the stator flux of the electric motor. For example, the controller can have low sampling frequencies below 25 10,000 samples/second while maintaining reduced steadystate tracking error for both the torque and the stator flux of the electric motor as compared to conventional DTC systems. As a result, low-cost controllers having low sampling frequencies can be used while still achieving (i) good system 30 performance in both transient and steady states and (ii) low computational cost.

The motor controller may also provide multiple different pulse width modulation (PWM) control schemes that can be implemented in a wide variety applications. The motor 35 controller can implement a specific PWM control scheme that can be tailored so as to reduce the torque and stator flux ripples in a particular application.

One or more implementations are set forth in the accompanying drawings and the description below. Other features, 40 objects, and advantages will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1A is a diagram of a hysteresis controller-based DTC drive system.

FIG. 1B is a diagram of inverter voltage vectors of an inverter of the hysteresis controller-based DTC drive system of FIG. 1A.

FIG. 1C is a diagram of an exemplary stator flux vector positioned within a sector defined by the inverter voltage vectors of FIG. 1B.

FIG. 2A is diagram of a saturation controller-based DTC drive system.

FIG. 2B is an example graph of an input and output of a saturation controller of the saturation controller-based DTC drive system of FIG. 2A.

FIG. 2C is an example graph of torque ripple.

FIGS. 2D-2E are diagrams of discretized stator flux 60 vectors in a stationary reference frame as estimated by the saturation controller-based DTC drive system of FIG. 2A.

FIG. 2F is an example diagram of active voltage vectors applied to a stator flux vector in a stationary reference frame, where the active voltage vectors are inverter voltage vectors 65 of an inverter of the saturation controller-based DTC system of FIG. 2A.

FIGS. 3A-3D are graphs generated from simulations of a hysteresis-controller based DTC system and a saturationcontroller-based DTC system.

FIG. 4A is a diagram of an experimental setup for a hysteresis-controller based DTC system and a saturationcontroller-based DTC system.

FIGS. 4B-4C are graphs depicting steady state responses generated from implementation of the experimental setup of FIG. 4A.

FIGS. 4D-4H are graphs depicting dynamic responses generated from implementation of the experimental setup of FIG. 4A.

FIG. 5A shows graphs depicting simulated steady state responses of several PWM schemes over several switching periods for a saturation controller-based DTC system.

FIG. 5B shows graphs depicting steady state responses of several PWM schemes over a single switching period for a saturation controller-based DTC system.

FIGS. 5C-5F are diagrams depicting example PWM output waveforms for a saturation controller-based DTC system.

FIG. 5G shows graphs depicting experimental steady state responses of several PWM schemes over several switching periods for a saturation controller-based DTC scheme.

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

A saturation controller-based direct torque control (DTC) system can reduce the torque and stator flux ripples for electric motors, such as, for example, permanent-magnet synchronous motor (PMSM) drives, using a relatively low sampling frequency (e.g., below 10,000 samples/second). The DTC system can include an electric motor coupled to an inverter that receives alternating current (AC) from the inverter. The inverter is connected to a motor controller that implements a control scheme to determine a switching state of the inverter. In control of a multiphase, multilevel inverter, available switching states of the inverter can be represented as voltage vectors in which each entry of the voltage vector corresponds to a state of each phase of the inverter. For example, in a three-phase, two-level inverter, each entry of the voltage vector can correspond to selection 45 of one of the two levels (e.g., first and second levels) for a particular phase. A voltage vector V(1,1,0), for instance, corresponds to activation of a second level of phase a, a second level of phase b, and a first level of phase c. The motor controller can operate at a switching frequency in which the motor controller sends a control signal to the inverter at a rate corresponding to the switching frequency. The motor can generate the control signal such that the control signal corresponds to specific voltage vectors to be applied during a switching period.

Nonlinear adaptive saturation controllers can be implemented into the DTC system to control the inverter. The motor controller, for example, can include a switching table that, in combination with saturation controllers, generates control signals that correspond to a selected set of voltage vectors. Each voltage vector of the set of voltage vectors can be activated for a predetermined activation time to enable delivery of AC having a desired frequency, amplitude, and phase to the motor. The activation times of the voltage vectors can be determined based on the outputs of the saturation controllers. For example, a duty ratio modulator can compute the duty ratios for each of the voltage vectors such that each selected voltage vector has an assigned

on-time or activation time in the switching cycle. In this regard, for each switching cycle, the inverter is placed in multiple inverter states corresponding to the voltage vectors. Each inverter state corresponds to one of the voltage vectors, and within the switching cycle, the inverter is in each 5 inverter state for the corresponding assigned activation time.

The examples of saturation controller-based DTC systems described herein can significantly reduce the steady-state torque and flux ripples of PMSMs and other electric motors. These DTC systems can also control the electric motors with 10 fast dynamics, robustness to disturbances, and low computational cost. The saturation controller-based DTC systems can further reduce steady-state torque tracking error at low sampling frequencies.

Hysteresis Controller-Based DTC System

FIG. 1A shows an example of a hysteresis-controller based DTC system 100 that controls a permanent-magnet synchronous motor (PMSM) 102. The DTC system 100 includes a motor controller 115 that, at a switching cycle, delivers a control signal 112 to an inverter 114, which 20 converts DC to AC that powers the motor 102. The inverter 114 is coupled to a DC source and includes circuitry that enables DC current from the DC source to be converted to AC. In some examples, the inverter 114 is a two-level, three-phase inverter. In such examples, the control signal 25 112 delivered to the inverter 114 causes the inverter 114 to be placed in a sequence of one or more inverter states. For each inverter state, the control signal 112 activates a combination of switches of the inverter 114 to specify the level for each of the three phases. If the inverter 114 is a two-level, 30 three-phase inverter, the inverter **114** includes eight possible switching states, including two passive switching states in which current is not delivered through each of the three phases. In the six active switching states, the inverter 114 is configured such that the DC source is able to deliver an AC 35 below. output having a current i_{abc} and voltage u_{abc} to the motor 102. In the two passive switching states, the current i_{abc} and voltage u_{abc} are zero. The current i_{abc} and the voltage u_{abc} can vary in phase, amplitude, and frequency depending on the switching state of the inverter 114, e.g., depending on 40 which of the combination of the switches of the inverter 114 are activated.

The motor controller **115** generates several control signals **112** during operation of the electric motor **102**. To generate a control signal **112** for a single switching cycle, the motor 45 controller **115** can respond to feedback signals using two hysteresis controllers **104** and **106**, a switching table **108**, and an estimator **110**. The estimator **110** of the motor controller **115** receives a feedback voltage u_{abc} and a feedback current i_{abc} which correspond to the voltage and current 50 delivered to the motor **102**—and uses those feedback values to estimate an electromagnetic torque T_e and a stator flux ψ_s . The estimator **110** implements, for example, a state observer system or a state-space model to generate the estimated electromagnetic torque T_e and the estimated stator flux ψ_s . 55

The motor controller **115** uses the estimated electromagnetic torque T_e and the stator flux ψ_s directly as feedback signals for operation of the torque hysteresis controller **104** and the stator flux hysteresis controller **106**. The torque hysteresis controller **104** transforms a torque error e_T (the 60 difference between the estimated torque T_e and a reference torque T_e^*) into an torque comparator output c_T . The stator flux hysteresis controller **106** transforms a stator flux error e_{ψ} (the difference between a magnitude of the estimated stator flux $|\psi_s|$ and a magnitude of a reference stator flux 65 $|\psi_s|^*$) into a stator flux comparator output c_{ψ} . Each of the hysteresis controllers **104** and **106** outputs two discrete

states: a low state and a high state. For example, the hysteresis controllers **104** and **106** can output the discrete states 0 or 1 for the torque comparator output c_T and the stator flux comparator output c_{ψ} , respectively.

In examples in which the inverter 114 is a three-phase two-level inverter, the inverter 114 (shown in FIG. 1A) controls the motor 102 using eight inverter voltage vectors V₀ through V₇ corresponding to the eight available switching states of the inverter 114. FIG. 1B shows a 2D spatial placement of the inverter voltage vectors V_{0} through V_{7} within an $\alpha\beta$ reference frame, which is a stationary reference frame generated using an $\alpha\beta$ transformation. The $\alpha\beta$ reference frame is divided into six equally-sized sectors. The vectors V_0 through V_7 define sectors 1 through 6 of the $\alpha\beta$ reference frame. Each active vector V1 through V6 bisects the sector having the same numerical label. In other words, the angle between one active vector (e.g., V_1) and the boundary of the sector containing the active vector (e.g., Sector 1) is 30 degrees. The estimator 110 determines the position of the estimated stator flux ψ_s within the $\alpha\beta$ reference frame and selects one of the sectors 1 through 6 based on that position.

Referring back to FIG. 1A, the switching table 108 receives the sector number and the hysteresis outputs c_T and c_{ψ} and selects an optimal voltage vector from among the inverter voltage vectors V_0 through V_7 based on the sector number and the hysteresis outputs c_T and c_{ψ} . In a switching cycle, the motor controller 115 then delivers to the inverter 114 the control signal 112 corresponding to the selection from the switching table 108. The control signal 112 controls the inverter 114, in turn controlling the motor 102 to minimize the torque error e_T and flux error e_{ψ} . An example of the switching table 108 for a three-level torque hysteresis controller-based DTC system 100 is given in TABLE 1 below.

TABLE 1

Switching Table 108 for the DTC System 100											
	Sector										
		1	2	3	4	5	6				
$c_{\psi} = 1$ $c_{\psi} = 0$	$c_T = 1$ $c_T = 0$ $c_T = -1$ $c_T = 1$ $c_T = 0$ $c_T = -1$	$\begin{array}{c} V_2(110) \\ V_7(111) \\ V_6(101) \\ V_3(010) \\ V_0(000) \\ V_5(001) \end{array}$	$\begin{array}{c} V_3(010) \\ V_0(000) \\ V_1(100) \\ V_4(011) \\ V_7(111) \\ V_6(101) \end{array}$	$\begin{array}{c} V_4(011) \\ V_7(111) \\ V_2(110) \\ V_5(001) \\ V_0(000) \\ V_1(100) \end{array}$	$\begin{array}{c} V_5(001) \\ V_0(000) \\ V_3(010) \\ V_6(101) \\ V_7(111) \\ V_2(110) \end{array}$	$\begin{array}{c} V_6(101) \\ V_7(111) \\ V_4(011) \\ V_1(100) \\ V_0(000) \\ V_3(010) \end{array}$	$\begin{array}{c} V_1(100) \\ V_0(000) \\ V_5(001) \\ V_2(110) \\ V_7(111) \\ V_4(011) \end{array}$				

TABLE 1 shows thirty-six table entries that can be selected based on the sector number, the torque hysteresis output c_T , and the flux hysteresis output c_{ψ} . Because the torque hysteresis controller **104** outputs a two-level torque comparator output c_T , and the and the stator flux hysteresis controller **106** outputs a three-level stator flux comparator output c_{ψ} , the torque comparator output c_T and the stator flux comparator output c_{ψ} provide six distinct combinations of comparator output levels. Each of these distinct combinations can correspond to one of the six available vectors when the stator flux linkage ψ_s is in a given sector.

By way of example, as shown in TABLE 1, when the stator flux linkage ψ_s is positioned in sector 1, one of six voltage vectors can be selected: V_0, V_2, V_3, V_5, V_6 , and V_7 . Among these vectors, four inverter vectors V_2, V_3, V_5, V_6 , are active vectors, and two inverter vectors V_0 and V_7 are passive vectors. The inverter voltage vectors V_0 and V_7 are zero vectors in which, when applied, the inverter 114

F

60

65

delivers zero voltage and current. Referring to FIG. 1B, the four active inverter vectors V_2 , V_3 , V_5 , V_6 that can be selected when the stator flux linkage ψ_s is in sector 1 are shown. When the stator flux falls in sector 1, the application of the inverter vectors V_0 , V_2 , V_3 , V_5 , V_6 , and V_7 , i.e., placing the inverter **114** in the switching state corresponding to one of the inverter vectors, can have the following effects (assuming that the rotor is rotating anti-clockwise):

- $V_2(110)$ will increase both the torque T_e and the stator flux $_{10}$ amplitude $|\psi_s|$.
- $V_5(001)$ will decrease both the torque T_e and the stator flux amplitude $|\psi_s|$.
- V₃(010) will increase the torque T_e and decrease the stator $_{15}$ yields flux amplitude $|\psi_s|$.
- $V_6(101)$ will decrease the torque T_e and increase the stator flux amplitude $|\psi_s|$.
- Zero voltage vectors $V_0(000)$ and $V_7(111)$ will stop the stator flux ψ_s from moving, keep the stator flux amplitude $|\psi_s|$ constant, and decrease the electromagnetic torque T_e (but not to the degree with which the torque T_e will decrease with application of the active inverter vectors $V_5(001)$ and $V_6(101)$.

If the rotor is rotating clockwise, the above-described effects will be opposite when applying the same voltage vector. Similarly, if the stator flux linkage ψ_s is located in another sector (e.g., one of sectors 2-6), the switching table selects from six inverter voltage vectors, four of which are active 30 vectors and two of which are passive vectors.

In the DTC system 100 of FIG. 1A, when the stator flux linkage ψ_s is positioned in a given sector, the switching table 108 chooses a voltage vector from among the four active voltage vectors (i.e., the six non-zero voltage vectors) such 35 that the trajectory of the stator flux ψ_s is circular, though it is possible to choose from the zero vectors V_0 and V_7 if it is determined that there is no torque error c_T . Each non-zero voltage vector V1 through V6 will either increase or decrease the torque T_e or stator flux magnitude $|\psi_s|$. As shown in 40 TABLE 1 above, the switching table 108 selects one of the vectors based on the torque comparator output c_T and the stator flux comparator output c_{ψ} , which are indicators of whether the torque T_{e} and stator flux magnitude $|\psi_{s}|$, respectively, need to be increased or decreased to cause the torque 45 T_e and stator flux magnitude $|\psi_s|$ to tend toward the reference values.

In some examples, the motor controller 115 applies the selected voltage vector for the entire duration of time between receiving samples of the voltage v_{abc} and the current i_{abc}, e.g., the switching period. Upon receiving a subsequent sample, the switching table 108 can determine whether a new voltage vector should be applied based on the outputs of the hysteresis controllers 104, 106 and the estimator **110**. In some implementations, the motor controller 115 applies the selected voltage vector for a predetermined duration of time less than the sampling period. After the voltage vector is applied during the switching period, the motor controller 115 can apply a passive voltage vector for the remaining duration of time before receiving a subsequent sample. The switching period can be pre-selected based on, for example, the sampling period and/or the particular type of the electric motor to be controlled.

Analysis of DTC

In some implementations of a PMSM, the electromagnetic torque T_e can be expressed in terms of the amplitudes

of the stator flux linkage ψ_s and rotor flux linkage ψ_m , as shown in equation (1) below:

$$T_e = \frac{3}{4} \frac{p |\psi_s|}{L_d L_q} [2\psi_m L_q \sin\delta - |\psi_s| (L_q - L_d) \sin(2\delta)] \tag{1}$$

 L_q and L_d are the quadrature-axis (q-axis) and the direct axis (d-axis) inductances of the PMSM, respectively; ψ_m is the rotor flux linkage generated by the permanent magnets of the PMSM; $|\psi_s|$ is the stator flux linkage magnitude; δ is the torque angle; and p is the number of pole pairs.

Taking the derivative of equation (1) with respect to time yields

$$\frac{dT_e}{dt} = A \times \frac{d|\psi_s|}{dt} + B \times \frac{d\delta}{dt} \text{ where}$$
(2)

$$A = \frac{3}{2} \frac{p}{L_d} \left[\psi_m \sin\delta - \frac{L_q - L_d}{L_q} |\psi_s| \sin 2\delta \right], \text{ and}$$
(3)

$$B = \frac{3}{2} \frac{p}{L_d} \left[\psi_m |\psi_s| \cos\delta - \frac{L_d - L_d}{L_q} |\psi_s|^2 \cos 2\delta \right]. \tag{4}$$

After discretization of the stator flux linkage ψ_s and rotor flux linkage ψ_m , the torque variation between two sampling intervals can be expressed as:

$$\Delta T_e = \frac{3}{2} \frac{p}{L_d} \left[\psi_m \sin \delta_0 - \frac{L_q - L_d}{L_q} |\psi_s|_0 \sin 2\delta_0 \right] \times \Delta |\psi_s| + \frac{3}{2} \frac{p}{L_d} \left[\psi_m |\psi_s|_0 \cos \delta_0 - \frac{L_q - L_d}{L_q} |\psi_s|_0^2 \cos 2\delta_0 \right] \times \Delta \delta$$
(5)

where $|\psi_s|_0$ and δ_0 are the stator flux magnitude and the torque angle at the reference point, respectively. Equations (2)-(5) demonstrate that the operating mode (related to $|\psi_s|_0$) and loading condition (related to δ_0) will affect the weights of flux and torque angle changes on electromagnetic torque ripples.

Neglecting the voltage drop caused by the stator resistance, the relationship between the stator voltage vector u_s and the change of stator flux vector $\Delta \psi_s$ can be expressed as

$$\Delta \omega_s = u_s T_s \tag{6}$$

where T_s is the sampling time. The sampling time corresponds to the amount of time between samples received by a motor controller. The samples can correspond to data representative of the electromagnetic torque T_e of the motor and the stator flux linkage ψ_s , such as, for example, the voltage u_{abc} and the current i_{abc} delivered to the motor. The change of the torque angle can be evaluated by

$$\Delta \delta = \Delta \Theta_{\nu \tau} - \omega_e T_s \tag{7}$$

where $\Delta \theta_{(VT)}$ is the change of stator flux angle when a voltage vector V_i (i=0, ..., 7) is applied for the period of T_s , and ω_e is the electrical rotor speed.

FIG. 1C illustrates the effect of the voltage vector V_2 on the stator flux ψ_s and the spatial relationships of the quantities in equation (7), assuming that the stator flux ψ_s lies in the sector 1. In FIG. 1C, ψ_s and ψ_m represent the initial stator and rotor flux vectors, respectively. ψ'_s and ψ'_m are the stator and rotor flux vectors at the end of the period of T_s with V_2 being applied. Assuming that a switching period T_s (corresponding to how often the switching table switches from one vector to another vector for a hysteresis controller-based DTC system) is infinitesimal, the change of the stator flux angle caused by the voltage vector is approximately proportional 5 to T_s . Therefore, according to equations (5)-(7), both the torque and the stator flux changes are approximately proportional to the sampling period.

In the DTC system described above, the voltage vectors can be executed in the entire switching cycle, which can 10 cause torque and flux ripples. The ripples can be even larger when the switching frequency is lower because the switching period T_s increases.

Equations (1)-(7) also can demonstrate the effects of zero voltage vectors on the load angle, particularly the change in 15 the load angle M. Since the use of zero voltage vectors $V_0(000)$ and/or $V_7(111)$ will not change the position or magnitude of the stator flux vector, $\Delta \theta_{VT}$ can be assumed to be zero such that the torque variation is only related to the load angle variation. Thus, according to equation (7), when 20 using zero voltage vectors, the change of the load angle is proportional to the switching period, i.e., equation (7) can be simplified to $\Delta \delta = -\omega_e T_s$. Therefore, the torque variation is proportional to the switching period. Different selection schemes for zero vectors can be implemented to produce 25 different switching periods that reduce torque variation. Saturation Controller-Based DTC System

Based on the above analysis of the torque and stator flux ripples of the DTC system 100, the DTC system 100 of FIG. 1A can be modified to reduce the torque and flux ripples 30 when the sampling frequency is low by modulating the duration of the active voltage vectors within one switching cycle. In some examples, the DTC system can include a saturation controller to improve the steady state errors of the torque and the stator flux of the electric motor. A schematic 35 diagram of a saturation controller-based DTC system 200 is shown in FIG. 2A. Similar to the DTC system 100 depicted in FIG. 1A, the DTC system 200 includes a motor controller 215 that generates control signals to control an inverter 214 that operates a motor 202. 40

The motor controller 215 includes a switching table 208 and an estimator 210. Instead of using the hysteresis controllers 104 and 106 as implemented in the DTC system 100 to determine the voltage vector to apply to the inverter 214, the DTC system 200 uses saturation controllers 204 and 206 45 that provide outputs used to determine activation times of multiple voltage vectors to apply to the inverter 214 in a switching cycle. The DTC system 200 additionally includes a torque comparator 205 and a duty ratio modulator 209. The DTC system 200 delivers control signals 212 to an inverter 50 214, which converts DC to AC. The inverter 214 can receive DC from a DC source (not shown), and then in turn delivers voltage u_{abc} and current i_{abc} to the motor 202. The DTC system 200 delivers a single control signal 212 to the inverter 214 at the start of a switching cycle. 55

The estimator **210** receives a feedback voltage u_{abc} and a feedback current i_{abc} , which correspond to the voltage and current delivered to the motor **202**. The feedback voltage u_{abc} and the feedback current i_{abc} are feedback signals usable by the motor controller **215** to determine the operations of 60 the motor **202**. For example, the motor controller **215** uses these values to estimate an electromagnetic torque T_e and a stator flux ψ_s of the motor **202**. The estimated electromagnetic torque T_e and the stator flux ψ_s can then be used as feedback signals that are compared to reference 65 values for the torque and the stator flux. The estimator **210** implements, for example, a state observer system or a

state-space model to generate the estimated electromagnetic torque T_e and the estimated stator flux ψ_s .

The torque saturation controller **204** then transforms a torque error \mathbf{e}_T (the difference between the estimated torque T_e and a reference torque T_e^*) into a torque saturation controller output \mathbf{s}_T . The stator flux saturation controller **206** transforms a stator flux error \mathbf{e}_{ψ} (the difference between a magnitude of the estimated stator flux $|\psi_s|$ and a magnitude of a reference stator flux $|\omega_s|^*$) into a stator flux saturation controller output \mathbf{s}_{ψ} . The torque comparator **205** transforms the torque error \mathbf{e}_T into a torque comparator output \mathbf{c}_T . The reference torque T_e^* and the reference stator flux $|\psi_s|^*$ can correspond to desired values for the torque and the stator flux, respectively.

The saturation controllers **204** and **206** can generate normalized outputs for the torque saturation controller output s_T and the stator flux saturation controller output s_{ψ} . For example, the saturation controllers **204** and **206** (shown in FIG. **2**A) can generate outputs s_T and s_{ψ} using the following equation:

$$\operatorname{sat}(x, B_{w}) = \begin{cases} 0.5 \times (\operatorname{sgn}(x) + 1), & |x| \ge B_{w} \\ 0.5 \times \left(\frac{x}{B_{w}} + 1\right), & |x| < B_{w} \end{cases}$$
(8)

where x is an input (e.g., the stator flux error e_{ψ} or the torque error e_T); B_{w} is the upper boundary; sat(x, B_{w}) is an output (e.g., the torque saturation controller output s_T or the stator flux saturation controller output s_{ψ}); and sgn(x) is the sign function.

Referring to FIG. 2B, the saturation controllers 204 and 206 can output a value corresponding to one of two discrete states or from a range of values between the two discrete states. In the normalized implementation as expressed in equation (8) and shown in FIG. 2B, the discrete states are 1 or 0. The discrete state of 1 can correspond to when the input x exceeds an upper boundary B_w , and the discrete state of 0 can correspond to when the input x is less than the lower boundary $-B_w$. The discrete state of 1 can be considered a high state that the saturation controller output sat(x, B_w) (hereby also referred to simply as the variable s) takes when the input x exceeds the upper boundary B_w . The discrete state of 0 can be considered a low state that the saturation controller output s takes when the input x falls below the lower boundary $-B_w$.

When the absolute value of the input x is below the boundary (or, when the input x is between the upper boundary and the lower boundary $-B_w$), the saturation controllers **204** and **206** transform the input x into the output s such that the output s takes a value in the range of [0, 1]. 0 and 1 therefore would correspond to the values for when the saturation controllers **204** and **206** are saturated.

In some examples, the range of [0, 1] is a continuous range of values that can be output by the saturation controllers **204**, **206**. The range of values can allow selection of the voltage vectors delivered to the inverter **214** to be more flexible so as to avoid overuse of nonzero vectors during a sampling period, which can lead to overshoot. In some examples, the value that the output s takes can be linearly proportional to the input x that the saturation controller **204** or **206** receives. The range of available values facilitates the pulse modulation for the inverter **214** and enables an adjustable duty ratio modulation within the desired limits.

The duty ratio modulator **209** implements the adjustable duty ratio modulation to generate the control signal **212** used

to control the motor **202** in the switching cycle. The control signal **212** activates a specific combination of switches of the inverter **214** to place the inverter **214** in a specific inverter state for an activation time determined by the duty ratio modulator **209**, as described herein. The inverter **214** ⁵ thereby applies a voltage and current to the motor **202** based on the control signal **212**.

In some implementations, the inputs of the switching table are the output c_T of the torque hysteresis comparator **205** and the sector number determined by the position of the stator flux vector ψ_s . The determination of these two inputs will be described below.

The torque comparator **205** determines a value at the kth (current) step for the torque comparator output c_T based on the following equation:

$$c_{T}[k] = \begin{cases} 1, & e_{T}[k] > B_{wh} \tag{9} \\ 0, & e_{T}[k] < -B_{wh} \\ c_{T}[k-1], & |e_{T}[k]| < B_{wh} \end{cases}$$

where e_T is the torque error and B_{wh} is the upper boundary of the torque comparator **205**, which is substantially equal to or larger than the B_w of the torque saturation controller. ²⁵ Equation (9) shows that the output of the torque hysteresis comparator **205** in the (k–1)th step (c_T [k–1]) will be maintained in the current step k if the input e_T [k] is within B_w .

As described earlier, in a two-level, three-phase, voltage source inverter-fed drive system, a voltage vector can be selected from eight available voltage vectors and applied to, for example, a motor. Referring back to FIG. 1B, the inverter 214 (shown in FIG. 2A) can control the motor 202 using eight inverter voltage vectors V_0 through V_7 . FIG. 1B shows a 2D spatial placement of the inverter voltage vectors V_0 through V_7 within an aft reference frame, which is a sta- ³⁵ tionary reference frame generated using an aft transformation. The $\alpha\beta$ reference frame is divided into six equallysized sectors. The vectors V_0 through V_7 define sectors 1 through 6 of the $\alpha\beta$ reference frame. Each active vector V through V_6 bisects the sector having the same numerical $_{40}$ label. In other words, the angle between one active vector (e.g., V_1) and the boundary of the sector containing the active vector (e.g., Sector 1) is 30 degrees. The estimator **210** determines the position of the estimated stator flux ψ_s within the $\alpha\beta$ reference frame and selects one of the sectors 45 1 through 6 based on that position.

In some implementations, the switching table **208** differs from the switching table **108** in that the switching table **208** outputs a combination of multiple voltage vectors instead of a single voltage vector as implemented in the DTC system **100**. The switching table **208** receives the sector number and the torque comparator output c_T (generated by the torque comparator **205**) and uses those inputs to select voltage vectors from among the inverter voltage vectors V_0 through V_7 . An example of a switching table that outputs a combination of multiple voltage vectors for the saturation controlsectors form **205** and uses those inputs to select voltage vectors from among the inverter voltage vectors V_0 through V_7 . An example of a switching table that outputs a combination of multiple voltage vectors for the saturation controlbler-based DTC system **200** is given in TABLE 2 below.

TABLE 2

	Example of	Example of Switching Table 208 for the DTC System 200										
		Sector										
	1	2	3	4	5	6						
c _T = 1	$V_2(110) V_3(010) V_0(000)$	$\begin{array}{c} V_{3}(010) \\ V_{4}(011) \\ V_{0}(000) \end{array}$	$\begin{array}{c} V_4(011) \\ V_5(001) \\ V_0(000) \end{array}$	$\begin{array}{c} V_{5}(001) \\ V_{6}(101) \\ V_{0}(000) \end{array}$	$\begin{array}{c} V_6(101) \\ V_1(100) \\ V_0(000) \end{array}$	$\begin{array}{c} V_1(100) \\ V_2(110) \\ V_0(000) \end{array}$						

14

Example of Switching Table 208 for the DTC System 200												
		Sector										
	1	2	3	4	5	6						
c _T = 0	$\begin{array}{c} V_6(101) \\ V_5(001) \\ V_0(000) \end{array}$	$\begin{array}{c} V_1(100) \\ V_6(101) \\ V_0(000) \end{array}$	$\begin{array}{c} V_2(110) \\ V_1(100) \\ V_0(000) \end{array}$	$\begin{array}{c} V_3(010) \\ V_2(110) \\ V_0(000) \end{array}$	$\begin{array}{c} V_4(011) \\ V_3(010) \\ V_0(000) \end{array}$	$\begin{array}{c} V_5(001) \\ V_4(011) \\ V_0(000) \end{array}$						

TABLE 2 shows twelve table entries that can be selected based on the sector number and the torque hysteresis output c_T , in which each table entry includes three inverter voltage vectors. For example, when the stator flux linkage ψ_s is positioned within sector 1, two potential sets of vectors can be selected, in which the first potential set includes vectors V2, V3, and V0, the second potential set includes V6, V5, and V₀. Among these two sets of vectors, four inverter vectors $_{20}$ V₂, V₃, V₅, V₆ are active vectors, and the inverter vector V₀ is a passive vector. The inverter voltage vectors V_0 and V_7 are zero vectors. Referring back to FIG. 1B, the four active inverter vectors V_2, V_3, V_5, V_6 that can be selected when the stator flux linkage ψ_s is in sector 1 are shown. As described earlier, when the stator flux linkage ψ_s falls in the sector 1, the application of the inverter vectors V₀, V₂, V₃, V₅, V₆, and V_7 can have the following effects (assuming that the rotor is rotating anti-clockwise):

- V₂(110) will increase both the torque T_e and the stator flux amplitude $|\psi_s|$.
- $V_5(001)$ will decrease both the torque T_e and the stator flux amplitude $|\psi_s|$.
- $V_3(010)$ will increase the torque T_e and decrease the stator flux amplitude $|\psi_s|$.
- $V_6(101)$ will decrease the torque T_e and increase the stator flux amplitude $|\psi_e|$.
- Zero voltage vectors $V_0(000)$ and $V_7(111)$ will stop the stator flux linkage ψ_s from moving, keep the stator flux amplitude $|\psi_s|$ constant, and decrease the electromagnetic torque T_e (but not to the degree with which the torque T_e will decrease with application of the active inverter vectors $V_5(001)$ and $V_6(101)$.

Although both the zero vectors $V_0(000)$ and $V_7(111)$ and the active vectors $V_5(001)$ and $V_6(101)$ can decrease the torque T_e , the rate at which the torque decreases is larger for the active vectors than for the zero vectors because the active voltage vectors $V_5(001)$ and $V_6(101)$ will make the stator flux vector ψ_s rotate in the direction opposite to the rotating direction of the rotor flux vector ψ_m . The active voltage vectors $V_5(001)$ and $V_6(101)$ therefore can cause a more significant reduction of the torque and, thus, a larger torque ripple. The active vectors $V_5(001)$ and $V_6(101)$ can be used when a large torque decrease is needed. The passive vectors $V_0(000)$ and $V_7(111)$ can be applied when a smaller torque decrease is needed.

In the steady-state operation, the zero vectors can be used to decrease the torque to reduce torque ripples. If the rotor is rotating clockwise, the above-described effects will be opposite when applying the same voltage vector. A similar analysis applies to cases in which the stator flux linkage ψ_s is positioned in another sector (e.g., one of sectors 2-6). Four active vectors and two passive vectors are available for each of the other sectors.

In the DTC system 200 of FIG. 2A, the switching table 5 208 is a two-level torque switching system. The example of the switching table 208 shown in TABLE 2 outputs three voltage vectors depending on the torque comparator output c_T sent from the torque comparator 205. The three voltage vectors include two active voltage vectors and a passive voltage vector. As shown in TABLE 2, the top two voltage vectors of each entry are active voltage vectors, and bottom voltage vector of each entry is the passive voltage vector. When the stator flux linkage ψ_s is positioned within sector 1, based on the analysis of the use of the active and passive voltage vectors described above, the following four scenarios describe qualitative rules for voltage vector selection in a switching cycle to minimize the torque error e_{τ} and the 10 stator flux error e_{w} while minimizing torque ripple:

- Scenario (1): When $c_T[k]=1$ and $c_T[k-1]=0$, the torque tracking error $e_T[k] > B_w$, meaning that the torque needs to be increased significantly. The active voltage vectors $V_2(110)$ and $V_3(010)$ can increase the torque relatively 15 faster and therefore can be applied to decrease the tracking error. The durations of these two vectors in one switching cycle are assigned according to the output s_{ψ} of the stator flux saturation controller 206 to obtain a smooth and circular stator flux trajectory. The zero 20 vector $V_0(000)$ can be selected by the switching table 208 but need not necessarily be used by the duty ratio modulator 209.
- Scenario (2): When $c_T[k]=c_T[k-1]=1$, either $e_T[k]>B_w$ or $|e_T[k]| < B_w$. If $e_T[l] > B_w$ then the voltage vector assign- 25 ment in scenario (1) is implemented. If $|e_{\tau}[k]| < B_{w}$, the PMSM drive system is operating in a quasi-steady state and the torque T_e can be adjusted slightly to keep the torque error e_T within the boundaries B_w . In this case, the active vectors $V_2(110)$ and $V_3(010)$ can be applied 30 for part of the entire switching cycle to keep the torque T_e increasing. The zero vector $V_0(000)$ can be used for a certain portion of the switching cycle to reduce the torque T_e and reduce the torque ripple. One or both of the active vectors $V_2(001)$ and $V_3(101)$ can be applied 35 for a portion of the switching cycle.
- Scenario (3): When $c_T[k]=0$ and $c_T[k-1]=1$, the torque tracking error $e_T[k] \le -B_w$, meaning that the torque needs to be decreased significantly. The active voltage vectors $V_5(001)$ and $V_6(101)$ can decrease the torque 40 relatively faster and therefore can be applied to decrease the tracking error. The durations of these two vectors in one switching cycle can be assigned according to the output s_w of the stator flux saturation controller 206 to obtain a smooth and circular trajectory for 45 the stator flux. The zero vector $V_0(000)$ can be selected but not used.
- Scenario (4): When $c_{\tau}[k] = c_{\tau}[k-1] = 0$, either $e_{\tau}[k] < -B_{w}$ or $|e_T[k]| < B_w$. If $e_T[k] < -B_w$, then the voltage vector assignment in scenario (3) is implemented. If $|e_R[k]|$ 50 $|<B_w$, similar to scenario 2, the PMSM drive system is operating in a quasi-steady state. The torque T_e only needs to be adjusted slightly to keep the torque error e_{τ} within the boundaries. In this case, the active vectors $V_5(001)$ and $V_6(101)$ are not applied for the whole 55 vectors shown in the same order in TABLE 2. switching cycle. Rather, the zero vector $V_0(000)$ is used for a certain portion of the switching cycle to reduce the torque ripple. One or both of the active vectors $V_5(001)$ and $V_6(101)$ can be applied for a portion of the switching cycle. Scenarios (3) and (4) are usually seen in the 60 regenerative braking mode of the PMSM.

Although both of the passive vectors V_0 and V_7 could be applied to decrease the torque, only the vector V_0 is available for each table entry in the example of the switching table 208 shown in TABLE 2. In some implementations, as 65 described herein, V7 is the available passive vector, or a combination of both of V_0 and V_7 is available. Using

 $V_0(000)$ only, as described with respect to TABLE 2, or $V_{7}(111)$ only can simplify the modulation algorithm and reduce the switching times of the inverter switches.

FIG. 2C depicts example switching cycles 220a and 220b that include a torque ripple 225 that may occur during implementation of the DTC control systems described herein. In particular, the torque ripple 225 may occur as part of the responses of the motor controller 215 described in the above described scenarios (1) through (4).

The torque ripple 225 is shown to be contained within an interval smaller than the interval defined by the upper boundary $T_e^* + B_w$ and the lower boundary $T_e^* - B_w$. The larger interval defined by the upper boundary $T_e^*+B_w$ and the lower boundary $T_e^*-B_w$ represents the extent of the torque ripple that may be found in the DTC system 100, which simply uses hysteresis controllers 104 and 106. The torque ripple 225 corresponds to the torque ripple that may be found in the DTC system 200, which uses the saturation controllers 204 and 206.

The torque hysteresis comparator 205 provides a supplementary signal (i.e., c_{τ}) to determine when to enable a sharp torque decrease to promote the fast dynamic response of the DTC system 200. The activation time for $V_0(000)$ during a switching cycle is determined by the output s_T of the torque saturation controller 204. The activation times of the active and passive vectors for the same switching cycle can be determined using methods as described in detail herein.

As shown in FIG. 2C, each switching cycle 220a, 220b includes a portion of time in which an active vector $v_{act1,2}$ is activated and a portion of time in which a zero vector v_{zero} is activated. Referring to FIG. 2A, in a switching cycle, the duty ratio modulator 209 selects a linear combination of the selected passive and active voltage vectors and delivers the control signal 212 to control the inverter 214 to minimize the torque error e_T and flux error e_{ψ} . The duty ratio modulator 209 quantitatively implements the voltage vector assignments in scenarios (1) through (4) as described above based on the outputs of the saturation controllers 204, 206. As described above, the saturation controllers 204 and 206 can output not only the discrete state 0 or 1 but also values between 0 and 1. The duty ratio modulator 209 can use the normalized outputs s_T and s_w of the saturation controllers 204 and 206 to compute coefficients for the linear combination of the selected voltage vectors that will minimize the torque error e_T and flux error e_{ψ} . The coefficients correspond to activation times for each of the vectors. The duty ratio modulator 209 determines the duty ratio vector d based on the following equation:

$$t = s_T(s_{\psi} - v_{act1} + (1 - s_{\psi}) \cdot v_{act2}) + (1 - s_T) \cdot v_{zero}, \text{ when}(c_T = 1)$$
(10)

where v_{act1} , v_{act2} and v_{zero} are the selected three voltage

à

The switching table 208 selects two active vectors v_{act1} and \mathbf{v}_{act2} and a zero vector \mathbf{v}_{zero} at one time based on the position of the stator flux ψ_s within one of the six sectors and the torque comparator output c_T . The three elements in the desired duty ratio vector d can correspond to the activation times of each of the three selected inverter voltage vectors. For example, a duty ratio vector d of (0.2, 0.4, 0.4) can correspond to activation times of 20%, 40%, and 40% of the switching period for the active vector v_{act1} , the active vector vact2, and the zero vector vzero. In each switching cycle, equation (10) or (11) can be used to determine the duty ratio vector d when c_T equals to 1 or 0, respectively.

While the switching table depicted in TABLE 2 is shown to include table entries having three distinct vectors, in some implementations, the switching table **208** for the saturation controller-based DTC system **200** can be modified so that each table entry includes additional or fewer voltage vectors. For instance, the example of the switching table **208** in TABLE 3 differs from the example of the switching table **208** in TABLE 2 in that a combination of both of the passive vectors $V_0(000)$ and $V_7(111)$ can be applied during a switching cycle.

TABLE 3

	Sector										
	1	2	3	4	5	6					
$c_T = 1$	V ₂ (110)	V ₃ (010)	$V_4(011)$	V ₅ (001)	V ₆ (101)	$V_1(100)$					
	$V_3(010)$	$V_4(011)$	$V_5(001)$	$V_6(101)$	$V_1(100)$	$V_2(110)$					
	$V_0(000)$	$V_0(000)$	$V_0(000)$	$V_0(000)$	$V_0(000)$	$V_0(000)$					
	$V_7(111)$	$V_7(111)$	$V_7(111)$	$V_7(111)$	$V_7(111)$	V ₇ (111)					
$T_{T} = 0$	$V_6(101)$	$V_1(100)$	$V_2(110)$	$V_{3}(010)$	$V_4(011)$	$V_5(001)$					
•	$V_{5}(001)$	$V_6(101)$	$V_1(100)$	$V_{2}(110)$	$V_{3}(010)$	$V_4(011)$					
	$V_0(000)$	$V_0(000)$	$V_0(000)$	$V_0(000)$	$V_0(000)$	$-V_0(000)$					
	$V_7(111)$	$V_7(111)$	$V_7(111)$	$V_7(111)$	$V_7(111)$	$V_7(111)$					

TABLE 3, similar to TABLE 2, shows twelve table entries that can be selected based on the sector number and the torque hysteresis output c_T . In contrast to the three available vectors in each table entry of TABLE 2, each table entry in 30 TABLE 3 includes four vectors. Thus, in the example of the switching table **208** shown in TABLE 3, the switching table **208** outputs four voltage vectors depending on the torque comparator output c_T sent from the torque comparator **205**. The four vectors include the two passive vectors V_0 and V_7 35 and two active vectors selected from the six active vectors V_1 to V_6 . As shown in TABLE 3, the top two voltage vectors of each entry are active voltage vectors, and bottom two voltage vectors of each entry are the passive voltage vectors.

When the stator flux linkage ψ_s is positioned within sector 40 1, the following four scenarios describe qualitative rules for voltage vector selection to minimize the torque error e_T and the stator flux error e_{ψ} while minimizing torque ripple using TABLE 3 for the switching table **208**:

- Scenario (1): When $c_T[k]=1$ and $c_T[k-1]=0$, the torque 45 tracking error $e_T[k]>B_w$, meaning that the torque needs to be increased significantly. The active voltage vectors $V_2(110)$ and V_3 (010) can increase the torque relatively faster and therefore are applied to reduce the tracking error. The durations of these two vectors in one switch-50 ing cycle are assigned according to the output s_{ψ} of the stator flux saturation controller **206** to obtain a smooth and circular stator flux trajectory. The zero vectors $V_0(000)$ and/or $V_7(111)$ can be selected by the switching table **208** but need not necessarily be used by the 55 duty ratio modulator **209**.
- Scenario (2): When $c_T[k]=c_T[k-1]=1$, either $e_T[k]>B_w$ or $|e_T[k]|<B_w$. If $e_T[k]>B_w$, then the voltage vector assignment in scenario (1) is implemented. If $|e_T[k]|<B_w$ the PMSM drive system is operating in a quasi-steady state 60 and the torque T_e can be adjusted slightly to keep the torque error e_T within the boundaries B_w . In this case, the active vectors $V_2(110)$ and V_3 (010) can be applied for part of the entire switching cycle to keep the torque T_e increasing. One or both of the active vectors $V_2(001)$ 65 and V_3 (101) can be applied for a portion of the switching cycle. The zero vectors $V_0(000)$ and/or

 $V_7(111)$ can be used for a certain portion of the switching cycle to reduce the torque T_e and reduce the torque ripple.

- Scenario (3): When $c_T[k]=0$ and $c_T[k-1]=1$, the torque tracking error $e_T[k] <-B_w$, meaning that the torque needs to be decreased significantly. The active voltage vectors $V_5(001)$ and $V_6(101)$ can decrease the torque and therefore can be applied to reduce the tracking error. The durations of these two vectors in one switching cycle can be assigned according to the output s_{ψ} of the stator flux saturation controller **206** in order to obtain a smooth and circular trajectory for the stator flux. The zero vectors $V_0(000)$ and/or $V_7(111)$ will be selected but not used.
- Scenario (4): When $c_T[k]=c_T[k-1]=0$, either $e_T[k]<-B_x$, or $|e_T[k]|<B_w$. If $e_T[k]<-B_w$, then the voltage vector assignment in scenario (3) is implemented. If $|e_R|[1]$ $<B_w$, similar to scenario 2, the PMSM drive system is operating in a quasi-steady state and the torque T_e only needs to be adjusted slightly to keep the torque error e_T within the boundaries B_w . In this case, the active vectors $V_5(001)$ and $V_6(101)$ are not applied for the whole switching cycle. The zero vectors $V_0(000)$ and/ or $V_7(111)$ will be used for a certain period of the switching cycle to reduce the torque ripple. One or both of the active vectors $V_5(001)$ and $V_6(101)$ can be applied for a portion of the switching cycle. Scenarios (3) and (4) are usually seen in the regenerative braking mode of the PMSM.

Using a combination of $V_0(000)$ and $V_7(111)$, as described above with respect to TABLE 3, may reduce the harmonics of output voltages or currents. The activation times for zero vectors in a switching cycle are determined by the output s_T of the torque saturation controller **204**. The activation times of the active and passive vectors for the same switching cycle can be determined using methods as described in detail herein.

In this example of the switching table **208** in which a combination of $V_0(000)$ and $V_7(111)$ is used, the duty ratio modulator **209** determines the duty ratio vector d based on the following equation:

$$\begin{split} & d = s_{T}(s_{\psi} v_{act1} + (1 - s_{\psi}) \cdot v_{act2}) + + (1 - s_{T}) \cdot (\mu \cdot V_0 + (1 - \mu) \cdot V_7), \\ & \text{when } (c_T = 1) \end{split}$$

$$\begin{array}{l} \mathcal{I} = (1 - s_T)(s_{\psi} - \nu_{act1} + (1 - s_{\psi}) \cdot \nu_{act2}) + s_T \cdot (\mu \cdot V_0 + (1 - \mu) \cdot V_7), \\ \text{when } (c_T = 0) \end{array}$$
(13)

where v_{act1} , v_{act2} , V_0 and V_7 are the selected four voltage vectors. The vectors v_{act1} , v_{act2} are selected from the active vectors. μ is a weighting factor determining the weights of two zero vectors. μ can be a constant or a variable. Equations (12) and (13) differ from equations (10) and (11) in that equations (12) and (13) include the weighting factor μ that determines the activation times for the zero vectors V_0 and V_7 relative to one another.

When the DTC system **200** implements the duty ratio modulation scheme shown in equations (12) and (13), the value for the weighting factor μ can determine specific pulse width modulation (PWM) techniques facilitated by the switching table **208** and the duty ratio modulator **209**. These techniques include, for example, continuous PWM (CPWM) implemented in the DTC system **200** when the weighting factor μ =0.5, discontinuous PWM minimum (DPWMMIN) implemented in the DTC system **200** when the weighting factor μ =1, discontinuous PWM maximum (DPWMMAX) implemented in the DTC system **200** when the weighting factor μ =0, discontinuous PWM (DPWM) implemented in

the DTC system 200 when the value for the weighting factor μ varies when the stator flux linkage ψ_s is positioned in different sector numbers. While the values for the weighting factor μ are described to be 0, 0.5, or 1, the weighting factor μ can be set to other values to achieve optimal performance 5 under different operating conditions or applications of the DTC system 200.

In a DPWMMAX scheme, when the weighting factor $\mu=0$, the zero vector V₇ is weighted such that the zero vector V_7 is applied while the zero vector V_0 is not applied. TABLE 4 below represents an example of the switching table equivalent to when the weighting factor $\mu=0$. TABLE 4 is similar to the example of the switching table 208 represented in TABLE 2 except that the passive vector in each table entry 15 of TABLE 4 is the zero vector $V_7(111)$.

TABLE 4

	Example of Switching Table 208 for the DTC System 200 when $\mu = 0$										
	Sector										
	1	2	3	4	5	6					
$c_T = 1$	V ₂ (110)	V ₃ (010)	V ₄ (011)	V ₅ (001)	V ₆ (101)	V ₁ (100)					
	$V_{3}(010)$	$V_4(011)$	$V_5(001)$	$V_6(101)$	$V_1(100)$	$V_2(110)$					
	$V_7(111)$	$V_7(111)$	$V_7(111)$	$V_7(111)$	$V_7(111)$	$V_7(111)$					
$c_T = 0$	$V_6(101)$	$V_1(100)$	$V_2(110)$	V ₃ (010)	$V_4(011)$	$V_{5}(001)$					
	$V_{5}(001)$	$V_{6}(101)$	$V_{1}(100)$	$V_2(110)$	$V_{2}(010)$	$V_4(011)$					
	V (111)	V (111)	$\mathbf{v}_{(111)}$	$v_{-(111)}$	$\vec{v}_{-(111)}$	\vec{v} (111)					

In a DPWMMIN scheme, when the weighting factor $\mu=1$, the zero vector V_0 is weighted such that the zero vector V_0 is applied while the zero vector V7 is not applied. The switching table shown in TABLE 2 would correspond to the 35 equivalent switching table when the value of μ is set to 1.

In a CPWM scheme, when the weighting factor μ =0.5, the zero vector V_0 and the zero vector V_7 are equally weighted such that they have substantially equal activation times. The switching table 208 selects two active vectors v_{act1} and v_{act2} 40 and two zero vectors V_0 and V_7 at one time based on the position of the stator flux ψ_s within one of the six sectors and the torque comparator output c_T . The switching table 208 for the CPWM scheme can correspond to the example of the switching table represented in TABLE 3. The activation 45 times of each of the four selected inverter voltage vectors can be calculated by equation (12) or (13). In each switching cycle, equation (12) and (13) can be used to determine the duty ratio vector d when c_T equals to 1 and 0, respectively.

In a DPWM scheme, the weighting factor μ can vary depending on the sector number determined based on the position of the stator flux vs. In some examples, in a DPWM scheme, $\mu=1$ for sectors 1, 3 and 5 and $\mu=0$ for sectors 2, 4 and 6. The switching table for these values of μ corresponds to the equivalent switching table shown in TABLE 5 below. 55

TABLE 5

Εx μ	Example of Switching Table 208 for the DTC System 200 when $\mu = 0$ for Sectors 2, 4, and 6 and $\mu = 1$ for Sectors 1, 3 and 5										
	Sector										
	1	2	3	4	5	6					
c _T = 1	$\begin{array}{c} V_2(110) \\ V_3(010) \\ V_0(000) \end{array}$	$\begin{array}{c} V_{3}(010) \\ V_{4}(011) \\ V_{7}(111) \end{array}$	$\begin{array}{c} V_4(011) \\ V_5(001) \\ V_0(000) \end{array}$	$\begin{array}{c} V_{5}(001) \\ V_{6}(101) \\ V_{7}(111) \end{array}$	$\begin{array}{c} V_6(101) \\ V_1(100) \\ V_0(000) \end{array}$	$V_1(100) V_2(110) V_7(111)$	65				

20

TARLE	5-continue	ьđ
IADLE	3-continu	eu

Example of Switching Table 208 for the DTC System 200 when $\mu = 0$ for Sectors 2, 4, and 6 and $\mu = 1$ for Sectors 1, 3 and 5						
	Sector					
	1	2	3	4	5	6
c _T = 0	$\begin{array}{c} V_6(101) \\ V_5(001) \\ V_0(000) \end{array}$	V ₁ (100) V ₆ (101) V ₇ (111)	$\begin{array}{c} V_2(110) \\ V_1(100) \\ V_0(000) \end{array}$	V ₃ (010) V ₂ (110) V ₇ (111)	$\begin{array}{c} V_4(011) \\ V_3(010) \\ V_0(000) \end{array}$	V ₅ (001) V ₄ (011) V ₇ (111)

The weighting factor μ can be preprogrammed into the motor controller 215 such that the switching table 208 can operate using one of the PWM control schemes described herein. In some implementations, the preprogrammed weighting factor µ is a default value, and the motor controller 215 may include a user interface that the user can use to control the value for the weighting factor μ . The motor controller 215 can include, for example, a touchscreen display, a keyboard, a switch, a dial, a keypad, or other device that enables a user of the motor controller 215 to easily select the value for the weighting factor μ . Additional Implementations of DTC

The DTC system 200 includes a torque control loop that mitigates the torque error e_T and a stator flux control loop that mitigates the flux error e_{w} . In some implementations of the DTC system 200, the saturation controllers 204 and 206 may provide the following attributes for the control loops:

- In the torque control loop, a 50% to 50% distribution between the active vectors and the zero vector in one switching cycle may maintain the torque tracking error e_T to be zero;
- In the stator flux control loop, a 50% to 50% distribution between the selected two active vectors may maintain the stator flux magnitude error e_{ψ} to be zero.

In some implementations, the DTC system 200 can implement the saturation controllers 204 and 206 as adaptive saturation controllers that can reduce the error associated with non-ideal performance of the control loops. The saturation controllers 204 and 206, when implemented as adaptive saturation controllers, can generate outputs s_T and s_w using the following equation:

$$at(x, B_w) = \begin{cases} 0.5 \times (\text{sgn}(x) + 1), & |x| \ge B_w \\ 0.5 \times \frac{x}{B_w} + d^*, & |x| < B_w \end{cases}$$
(12)

s

50 where x is an input (e.g., the stator flux error e_{ψ} or the torque error e_T ; is the upper boundary; sat(x, B_w) is an output (e.g., the torque saturation controller output s_T or the stator flux saturation controller output $s_\psi);\, \text{sgn}(x)$ is the sign function; and d* is an equilibrium duty ratio. The equilibrium duty ratio d* is the output of the saturation controller when the input x of the saturation controller is zero. Each of the saturation controllers 204 and 206 can have an equilibrium duty ratio d*, which reduces steady state error associated with, for example, stator flux and torque ripple. Torque Control Loop

In some implementations, the torque control loop can account for variations in back electromotive force (EMF) variations of the motor **202** using the equilibrium duty ratio d*. The back EMF is directly proportional to the rotor speed of the motor **202**. The output voltage u_{abc} of the inverter **214** can be adjusted with speed variations of the motor 202 to generate the desired torque.

25

40

FIGS. 2D-E show discretized stator flux vectors ψ_s and rotor flux vectors ψ_m . For example, $\psi_{s\alpha\beta}[k+1]$ and $\psi_{s\alpha\beta}[k]$ are the stator flux vectors in the $\alpha\beta$ stationary reference frame in the (k+1)th and kth time steps, respectively; $\psi_{m\alpha\beta}$ [k+1] and $\psi_{m\alpha\beta}[k]$ are the rotor flux vectors in the $\alpha\beta$ stationary reference frame in the (k+1)th and kth steps, respectively; $\omega_{e}[k]$ is the electrical rotor speed in the kth step; $d_{\tau}^{*}[k]$ is the equilibrium duty ratio of the torque-loop saturation controller 204 in the kth step; T_s is the sampling period; and u is the magnitude of the stator voltage vector that can be produced by the DC voltage.

When the motor 202 is operating in a steady state, a constant torque reference Te* and constant stator flux reference $|\psi_s|^*$ are applied. As a result, the torque error e_T and 15 stator flux error e_{ψ} in the kth step are both zero. In order to output the desired electromagnetic torque Te in the next step, the torque angle is constant. Thus, the angle swept by the stator flux vectors $\psi_{s\alpha\beta}[k+1]$ and $\psi_{s\alpha\beta}[k]$ and the angle swept by the rotor flux vectors $\psi_{m\alpha\beta}[k+1]$ and $\psi_{m\alpha\beta}[k]$ within one sampling period are identical. The change of the stator flux magnitude within one sampling period can be neglected. Therefore, the mathematical relation in the stator flux triangle shown in FIG. 2D can be expressed as

$$\sin\left(\omega_{\epsilon}[k]\frac{T_{s}}{2}\right) = \frac{\left(d_{T}^{*}[k]T_{s}\frac{u}{2}\right)}{|\psi_{s}[k]|}$$
⁽¹³⁾

Since the angle increment

$$\omega_{\epsilon}[k]\frac{T_s}{2}$$
 35

between two time steps is small, equation (13) can be simplified. As shown in FIG. 2E, using a small angle approximation, equation (13) can be simplified to

$$\sin\left(\omega_{\epsilon}[k]\frac{T_{s}}{2}\right) \approx \omega_{\epsilon}[k]\frac{T_{s}}{2} = \frac{\left(d_{T}^{*}[k]T_{s}\frac{u}{2}\right)}{|\psi_{s}[k]|}$$
(14)

The equivalent duty ratio for the torque-loop saturation controller can thus be derived as

$$d_T^*[k] = \frac{\sqrt{3}\,\omega_e[k]|\psi_s[k]|}{V_{DC}[k]} \tag{15}$$

where $u=V_{D\nu}[k]/\sqrt{3}$ in the linear modulation region for a three-phase two-level inverter. The duty ratio expressed in 55 equation (15) can be implemented into the torque control loop in order to reduce torque ripple associated with variations in the motor speed or causes of steady state error. Stator Flux Control Loop

In some implementations, the stator flux control loop can 60 account for variations in the stator flux waveform using the equilibrium duty ratio d*. For example, the stator flux control loop can improve the fidelity of the stator flux waveform as the stator flux vector ψ_s moves from one sector to another sector in the $\alpha\beta$ reference frame. In some 65 instances, saturation controllers can lead to six-pulse periodic oscillations of the stator flux waveform because the

increment and the decrement of the magnitude of the stator flux vector caused by the two selected active voltage vectors are unequal.

In one example illustrated in FIG. 2F, the stator flux vector $\psi_{s\alpha\beta}$ lies in sector 1. The switching table selects $V_2(110)$ and $V_3(010)$ as the active voltage vectors. The projections of the two active voltage vectors on the stator flux vector, V_2 and V_3 are different except for $\theta = \pi/6$. $V_{2,\psi}$ and V_{3_ψ} are expressed as

$$V_{2,\psi} = |V_2| \sin\theta \tag{16}$$

$$V_{3}\psi = |V_3|\sin(\frac{\pi}{3} - \theta)$$
(17)

 $V_{2\psi}$ can be set to equal $V_{3\psi}$ so that the magnitude of stator flux vector ψ_s remains substantially the same with application of the active voltage vectors. The on-time ratio between $\mathrm{V}_{2~\psi}$ and $\mathrm{V}_{3~\psi}$ can be then expressed as

$$\frac{t_{on_V_2}}{t_{on_V_3}} = \frac{\sin(\frac{\pi}{3} - \theta)}{\sin\theta}, \ \theta \in \left[0, \frac{\pi}{3}\right]$$
(18)

by applying $|V_2| = |V_3|$. According to equations (10) and (11), the total on-time of the two active vectors satisfies the equation $t_{on_{-}V_{2}} + t_{on_{-}V_{3}} = s_{T}T_{s}$. Therefore, the ratio of $t_{on_{-}V_{2}}$ to $s_{T}T_{s}$ can be expressed as

$$\frac{t_{on_V_2}}{s_T T_s} = \frac{\sin(\frac{\pi}{3} - \theta)}{\sin(\frac{\pi}{3} + \theta)}, \ \theta \in \left[0, \frac{\pi}{3}\right]$$
(19)

The right-hand-side term of equation (19) can be approximated by a linear function

$$f(\theta) = 1 - \frac{3\theta}{\pi},$$

The equilibrium duty ratio $d_{w}^{*}[k]$ of the flux-loop saturation controller 206 expressed by equation (11) can be approximated by

$$d_T^*[k] = 1 - \frac{3\theta}{\pi}, \ \theta \in [0, \frac{\pi}{3}]$$
 (20)

With this modification, the DTC system can account for variations in the magnitude of the active voltage vectors which can shift the magnitude of the stator flux vector vs. The modification can further reduce the stator flux ripples, allow the trajectory of the stator flux to become smoother and more circular, and reduce the six-pulse periodic oscillations in the stator flux.

Examples Comparing DTC Systems

The following sections describe simulations and experiments that measure the performance of the hysteresis controller-based and saturation controller-based DTC schemes. The implemented hysteresis controller-based scheme corresponds to the DTC system 100 described with respect to FIG. 1A, and the implemented saturation controller-based

scheme corresponds to the DTC system **200** described with respect to FIG. **2**A. The saturation controller-based DTC scheme includes the additional torque and stator flux control loop modifications related to the equilibrium duty ratio as described above. The effectiveness of the example DTC schemes is verified by simulation and experimental results on a 200-W PMSM drive system.

Computational Simulations

Simulation studies were carried out in MATLAB®/Simulink® to validate the proposed DTC scheme for a 200 W PMSM drive system. The parameters of the PMSM were as follows:

rated power=200 W;

maximum speed=3000 RPM;

R=0.235Ω;

L_d=0.275 mH;

 $L_{a} = 0.364 \text{ mH};$

voltage constant $K_e=9.7$ V/kRPM;

number of pole pairs p=4;

momentum of inertia J=0.000007 kg·m²;

DC bus voltage of the inverter=41.75 V; and sampling frequency is 10 kHz.

The boundaries of the torque and stator flux saturation

functions and hysteresis comparators were 0.3 N·m and 25 0.003 V·s, respectively. The dead-time effect and voltage drop of the power electronics devices were not considered in the simulation model.

The steady-state performances of the saturation controller-based DTC and the hysteresis controller-based DTC 30 were compared under various operating conditions. Firstly, the PMSM was operated at 1500 RPM and the commands of the torque and the stator flux linkage were 0.75 N·m and 0.0135 V·s, respectively.

The torque and stator flux waveforms of the saturation controller-based DTC system are shown in FIG. 3A. The torque and stator flux waveforms of the hysteresis controller-based DTC system are shown in FIG. 3B. As shown in FIG. 3A, in the simulation of the saturation controller-based $_{40}$ DTC, the peak-to-peak torque ripples were less than 0.26 N·m; the stator flux ripples were less than 0.0026 V·s; and the average torque was 0.75 N·m. As shown in FIG. 3B, when the hysteresis controller-based DTC was simulated, the peak-to-peak torque ripples were frequently larger than 45 1 N·m; peak-to-peak stator flux ripples went up to 0.006 V·s; and the estimated average torque was 0.63 N·m. Compared to the hysteresis controller-based DTC, the saturation controller-based DTC had torque and flux ripples that were 74% and 57% lower, respectively. The saturation controller-based 50 DTC outputted a larger mean torque at the same operating condition.

FIGS. 3C and 3D respectively show the performance of the saturation controller-based DTC scheme and the hysteresis controller-based DTC scheme at a higher rotor speed of 55 2500 RPM. The commands of the torque and the stator flux linkage were 0.5 N·m and 0.0135 V·s, respectively. As shown in FIG. 3C, the peak-to-peak torque and stator flux ripples for the saturation controller-based DTC system were less than 0.19 N·m and 0.003 V·s, respectively. As shown in 60 FIG. 3D, when the hysteresis controller-based DTC was simulated, the peak-to-peak torque and stator flux ripples became larger than 1 N·m and 0.006 V·s, respectively. In this case, the saturation controller-based DTC was able to reduce the torque and flux ripples by more than 80% and 55%, 65 respectively, compared with the hysteresis controller-based DTC.

Steady-State Experimental Study

Experimental studies were carried out on the 200 W PMSM drive system used in simulation studies. Referring to FIG. 4A, the control algorithms were implemented in a dSPACE 1104 real-time control system with a sampling period of 100 μ s. The dead-time was set as 1 μ s. A three-phase inverter was used to drive the PMSM. A DC generator was connected to a full bridge DC-DC converter, which operated as a load. The PMSM and the DC generator were connected via a mechanical coupling. The experimental results were recorded using the ControlDesk interfaced with dSPACE 1104 and a laboratory computer.

The steady-state performances of the saturation controller-based DTC and the hysteresis controller-based DTC are 15 compared in FIGS. 4B-4E for two rotor speed conditions. In FIGS. 4B and 4C, the PMSM was operated at 1500 RPM. The commands of the stator flux linkage and torque, and the boundaries of the hysteresis and saturation controllers were the same as those in the simulation. The experimental results 20 agreed with the simulation results. As shown in FIGS. 4B and 4C, the maximum peak-to-peak torque ripples of the saturation controller-based and hysteresis controller-based DTCs were 0.31 N·m and 1.2 N·m, respectively. The maximum peak-to-peak stator flux linkage ripples of the saturation controller-based and hysteresis controller-based DTCs were 0.0032 V·s and 0.0067 V·s, respectively. The average torques of the saturation controller-based DTC and the hysteresis controller-based DTC were 0.71 N·m and 0.5 N·m, respectively. When the rotor speed was increased to 2500 RPM and the torque command was changed to 0.5N·m, the maximum peak-to-peak torque ripples of the saturation controller-based and hysteresis controller-based DTCs were 0.475 N·m and 1.59 N·m, respectively, as shown in FIGS. 4D and 4E. The maximum peak-to-peak stator flux ripples of 35 the saturation controller-based and hysteresis controllerbased DTCs were 0.004V·s and 0.007 V·s, respectively. These results show that, as compared to the hysteresis controller-based DTC, the saturation controller-based DTC has reduced steady-state torque and stator flux ripples under various operating conditions.

Dynamic Response Experimental Study

Using the control system shown in FIG. 4A, the dynamic responses of the hysteresis controller-based DTC scheme and the saturation controller-based DTC scheme were compared. In FIG. 4F, the torque command changed from 0 N·m to 0.5 N·m at 0.2 ms when the rotor speed is 2000 RPM. For the saturation controller-based DTC, the torque increased from -0.01 N·m to 0.62 N·m within 0.3 ms (3 switching cycles), and in that period the hysteresis controller-based DTC boosted the torque from 0.06 N·m to 0.6 N·m. Thus, the saturation controller-based DTC and the hysteresis controller-based DTC achieve equivalent dynamic performance.

The dynamic responses of the saturation controller-based DTC and the hysteresis controller-based DTC were also tested when the PMSM drive system was in the speed control mode. In this mode, the torque command was generated by a PI controller which was driven by the rotor speed error. The speed command was 1500 RPM at the beginning and was changed to 2500 RPM at 1 s. The PI gains of the speed controller were $k_p=0.2$ and $k_i=0.05$, respectively. The torque command had an upper limit of 0.8 N·m and the load was 0.36 N·m. FIG. 4G shows the dynamic response of the rotor speed controlled by the saturation controller-based DTC scheme, and FIG. 4H shows the dynamic response of the rotor speed controlled by the hysteresis controller-based DTC scheme. The saturation controller-based DTC scheme had rotor speed ripples less

than 36 RPM. The hysteresis controller-based DTC scheme had rotor speed ripples up to 120 RPM. Since the saturation controller-based DTC can generate larger mean torque than the hysteresis controller-based DTC, the settle down time of the rotor speed using the saturation controller-based DTC was approximately 0.25 s, which is 0.075 s faster than the hysteresis controller-based DTC.

Examples Comparing PWM Techniques

The following sections describe simulations and experiments that measure the performance of the PWM techniques described herein, in particular, CPWM when $(\mu=0.5)$, DPWMMIN (when $\mu=1$), DPWMMAX (when $\mu=0$), DPWM (when $\mu=1$ for sectors 1, 3 and 5 and $\mu=0$ for sectors 2, 4 and 6). These techniques are implemented using the $_{15}$ DTC system 200 depicted in FIG. 2A. The effectiveness of the PWM schemes is verified by simulation and experimental results on a 200-W PMSM drive

The four approaches generate four different PWM waveforms, i.e., DPWMMIN, DPWMMAX, DPWM, and 20 CPWM, in each control cycle of the DTC system. The performance of the four zero-voltage-vector-selection approaches is evaluated by simulation studies in MAT-LAB®/Simulink® and experimental studies on a 200-W salient-pole PMSM drive system. Results show that the 25 CPWM scheme had lower torque ripple, less steady-state torque error, and lower stator current total harmonic distortion (THD). The number of switching actions in one electrical revolution in the CPWM scheme was usually higher 30 than that in the DPWM scheme. **Computational Simulations**

Simulation studies were carried out in MATLAB®/Simulink® to evaluate the saturation controller-based DTC system with the proposed four different zero voltage vector 35 selection schemes for a 200-W salient-pole PMSM drive system. The parameters of the PMSM were as follows:

the maximum speed is 3000 rpm;

R=0.235Ω;

L_=0.275 mH;

L_q=0.364 mH;

the voltage constant K_e=9.7 V/krpm;

the number of pole pairs is p=4;

the momentum of inertia is J=0.000007 kg·m2;

the DC bus voltage of the inverter is 41.75 V; and the sampling frequency is 10 kHz.

The boundaries of the torque and stator flux saturation functions and the hysteresis comparator were 0.3 N·m and 0.003 V·s, respectively. The steady-state performances of the four zero voltage vector selection schemes were com- 50 pared for the PMSM operating at 1500 rpm, where the commands of the torque and the stator flux magnitude were 0.75 N·m and 0.0135 V·s, respectively.

The stator current, torque magnitude, and duty ratio of the system using the four zero voltage vector selection schemes 55 are compared in FIG. 5A, which shows these parameters over several modulation cycles, e.g., several switching periods. Panel (a) of FIG. 5A shows the stator current, torque magnitude, and duty ratio of the DTC system implementing the DPWMMIN scheme. Panel (b) of FIG. 5A shows the 60 stator current, torque magnitude, and duty ratio of the DTC system implementing the CPWM scheme. Panel (c) of FIG. 5A shows the stator current, torque magnitude, and duty ratio of the DTC system implementing the DPWM scheme. Panel (d) of FIG. 5A shows the stator current, torque 65 magnitude, and duty ratio of the DTC system implementing the DPWMMAX scheme.

The steady-state torque error, torque ripples, THD of stator phase current, and switching frequency of the four schemes are compared in TABLE 6.

TABLE 6

Steady-State Performance of DPWMMIN, CPWM, DPWM, and DPWMMAX schemes					
Performance				DPWM	
metric	DPWMMIN	CPWM	DPWM	MAX	
Steady-state torque error (N · m)	0.0220	0.0102	0.0198	0.0166	
Torque ripple	0.0391	0.0217	0.0390	0.0379	
THD of stator	6.00	3.98	5.91	6.13	
f_{av} (kHz)	6.7	10	6.7	6.7	

The average switching frequency, f_{av} , was calculated using f_{av} =NT/T, where NT is the total number of switching times of one IGBT switch of the inverter during a fixed period T, which was 0.01 s in the simulation. As shown in FIG. 5A and TABLE 6, the CPWM achieved the lowest torque ripple, least steady-state torque error, and lowest stator current THD. The switching frequency of the CPWM was higher than the other three schemes.

The duty ratio d and the PWM output waveforms were also compared. FIG. 5B compares the duty ratio d and PWM output waveforms of phase-a leg of the inverter in one modulation cycle, e.g., a single switching period, of each of the four simulated schemes. The modulation cycle was 0.1 s in the simulation. Panel (a) of FIG. 5B shows the duty ratio d and PWM output waveform of the DTC system implementing the DPWMMIN scheme. Panel (b) of FIG. 5B shows the duty ratio d and PWM output waveform of the DTC system implementing the CPWM scheme. Panel (c) of FIG. 5B shows the duty ratio d and PWM output waveform 40 of the DTC system implementing the DPWM scheme. Panel (d) of FIG. 5B shows the duty ratio d and PWM output waveform of the DTC system implementing the DPWM-MAX scheme.

FIG. 5C-5F schematically depict simulations of the PWM 45 output waveforms S_a , S_b , and S_c of the three inverter legs for each of the four different PWM schemes. The PWM output waveforms S_a , S_b , and S_c correspond to phases a, b, and c, respectively, of the inverter. FIGS. 5C-5F correspond to the waveforms of the DPWMMIN, CPWM, DPWM, and DPWMMAX schemes, respectively. The left panel in each of FIGS. 5C-5F show the switching cycle when the stator flux linkage ψ_{s} is in located in sector 1, and the right panel in each of FIGS. 5C-5F show the switching cycle when the stator flux linkage ψ_s is located in sector 2. Each of FIGS. 5C-5F shows the reference signals for each of phase a, phase b, and phase c, as well as the carrier signal transmitted from the motor controller (e.g., the motor controller 215). FIGS. 5C-5F further depict when each of the vectors is activated during the switching cycle, with v_{act1}, v_{act2} corresponding to the active vectors noted in the switching table of TABLE 3. Experimental Results Experimental studies were carried out to further evaluate the three zero voltage vector selection schemes for the 200-W PMSM drive system used in the simulation studies. The control algorithms were implemented in a dSPACE 1104 real-time control system with a sampling period of 100 µs. The dead time was set as 1 µs. The hardware setup of the experimental system is schemati-

cally depicted in FIG. **4**A. Experiments were performed on the system at the same operating condition evaluated in the simulation studies described herein comparing the various zero voltage vector selection schemes.

Results are shown in FIG. **5**G and Table 7. Panel (a) of ⁵FIG. **5**G shows the stator current, torque magnitude, and duty ratio of the DTC system implementing the DPWMMIN scheme. Panel (b) of FIG. **5**G shows the stator current, torque magnitude, and duty ratio of the DTC system implementing the CPWM scheme. Panel (c) of FIG. **5**G shows the stator current, torque magnitude, and duty ratio of the DTC system implementing the DPWM scheme. The experimental results were similar to those of the computational simulations presented herein. The CPWM implementation achieved lower torque ripple, steady-state torque error, and stator current THD. The CPWM scheme also resulted in a higher switching frequency than the other two schemes.

TABLE 7

Steady-State Performance of the DPWMMIN, CPWM, DPWM Schemes				
Performance metric	DPWMMIN	CPWM	DPWM	
Steady-state torque error (N · m)	0.0080	0.0057	0.0132	
Torque ripple (N · m)	0.0280	0.0134	0.0337	
THD of stator phase current (%)	5.82	3.45	5.64	
f _{av} (kHz)	6.7	10	6.7	

The DTC system **200** has many applications, such as for ³⁰ use in driving motors in electric vehicles and industrial motors. Other applications include AC machines in home appliances, military manned/unmanned platforms and systems, wind energy conversion systems, offshore platforms, and robotics, etc. For these various applications and systems, the DTC system **200** can be used to control a speed or acceleration of the motors.

Various components or modules of the DTC system 200 and the motor controller 215, such as the torque and stator $_{40}$ flux estimator 210, the switching table 208, the saturation controllers 204 and 206, the torque comparator 205, the duty ratio modulator 209, and summers that generate the torque error and the stator flux error, can be implemented in hardware, software, firmware, or a combination of the 45 above. The components or modules can be implemented using discrete components or integrated circuits. Various components or modules of the DTC system 200 can be implemented using one or more data processors (e.g., general purpose processors or digital signal processors), in 50 combination with one or more data storages that store instructions to be executed by the one or more data processors for implementing the various functions of the DTC system 200, such as performing calculations according to various equations described above. The data storages can be 55 computer-readable mediums (e.g., RAM, ROM, SDRAM, hard disk, optical disk, and flash memory). The one or more processors can execute instructions to implement the functions performed by the modules of DTC system 200. The modules can also be implemented using application-specific 60 integrated circuits (ASICs). The term "computer-readable medium" refers to a medium that participates in providing instructions to a processor for execution, including without limitation, non-volatile media (e.g., optical or magnetic disks), and volatile media (e.g., memory) and transmission 65 media. Transmission media includes, without limitation, coaxial cables, copper wire and fiber optics.

The features described above can be implemented advantageously in one or more computer programs that are executable on a programmable system including at least one programmable processor coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system, at least one input device, and at least one output device. A computer program is a set of instructions that can be used, directly or indirectly, in a computer to perform a certain activity or bring about a certain result. A computer program can be written in any form of programming language (e.g., C, Java), including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, a browser-based web application, or other unit suitable for use in a computing environment.

Suitable processors for the execution of a program of instructions include, e.g., both general and special purpose microprocessors, digital signal processors, and the sole processor or one of multiple processors or cores, of any kind 20 of computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memories for storing instructions and data. Generally, a computer will also include, or be operatively coupled to communicate with, one or more mass storage devices for storing data files; such devices include magnetic disks, such as internal hard disks and removable disks; magneto-optical disks; and optical disks. Storage devices suitable for tangibly embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, ASICs (application-specific integrated circuits).

While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any inventions or of what may be claimed, but rather as descriptions of features specific to particular embodiments of particular inventions. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.

A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, the saturation controllers **204** and **206** can map the input x to the output s according to various functions. For example, when the input x is between the lower and upper boundaries, the relationship between the input x and the output s does not necessarily have to be linear, but can also be based on, e.g., a piecewise linear function, a Sigmoid function, or other functions.

While the inverter **114** and the inverter **214** have been described as two-level three-phase inverters, in some examples, the inverter **214** can have a single phase, two phases, or greater than four phases. In such cases, the switching table can include the appropriate number of entries based on the number of available switching states of the inverter.

While the DTC systems **100**, **200** have been described as including an inverter, in some examples, instead of an inverter, the DTC systems **100**, **200** include an analog AC output device that provides currents and voltage to the motor. The AC output device can be, for example, a power 5 supply that receives the control signals delivered by the motor controllers **115**, **215** and supplies a predetermined voltage and current based on the control signals.

With respect to the DTC system 200, while the normalized discrete states for the saturation controllers 204, 206 10 have been described to be 0 and 1, these values may differ depending on the application. For example, in some implementations, the discrete states can be -1 and 1. In some examples, the output value from the saturation controllers 204, 206 between the discrete states can be linearly propor- 15 tional to the input error. For example, as described herein, the output value linearly increases as the input value varies from the lower boundary $-B_w$ to the upper boundary B_w . In some cases, instead of linearly varying with the input error, the output value can vary with the input error in accordance 20 to a logistic function, an exponential function, a combination of several step functions, or other function in which the output value varies between a low value and a high value as the input value varies between the lower boundary $-B_w$ and the upper boundary B_{w} .

While one example of a DPWM scheme is described as corresponding to when $\mu=1$ for sectors 1, 3 and 5 and $\mu=0$ for sectors 2, 4 and 6, the DPWM scheme can include values for the weighting factor μ that are between 0 and 1, for example, between 0.1 and 0.5, or between 0.5 and 0.9. In 30 some implementations, a different value for the weighting factor μ is assigned to each sector.

In other implementations of the DTC system, a combination of saturation and hysteresis controllers can be used to deliver inputs to the duty ratio modulator. For example, the 35 torque error can be fed into a saturation controller while the flux error can be fed into a hysteresis controller. The output from those controller can then be delivered to the duty ratio modulator, which adopts a modified duty ratio equation to determine the duty ratio vector. 40

Accordingly, other implementations are within the scope of the following claims.

What is claimed is:

- 1. An apparatus comprising:
- a motor controller to generate control signals to control an electric motor, the motor controller comprising
 - a first saturation controller to generate a first saturation controller output based on feedback signals associated with the electric motor, and
 - a duty ratio modulator coupled to the first saturation controller, the duty ratio modulator being configured to determine activation times for a set of voltage vectors based on the first saturation controller output,
- wherein the motor controller is configured to generate, at 55 each switching cycle, a control signal based on the set of voltage vectors and the activation times for the set of voltage vectors, and provide the control signal for controlling the electric motor.

2. The apparatus of claim **1**, further comprising the 60 electric motor.

3. The apparatus of claim 2, wherein the electric motor is an alternating current motor.

4. The apparatus of claim **1**, wherein the first saturation controller is configured to generate the first saturation con- 65 troller output based on a difference between an estimated torque of the electric motor and a reference torque.

30

5. The apparatus of claim 1 in which the duty ratio modulator is configured to determine the activation times for the set of voltage vectors based on a hysteresis controller output and the first saturation controller output.

6. The apparatus of claim 1 in which the feedback signals are representative of a voltage and a current applied to the electric motor.

7. The apparatus of claim 1, wherein the motor controller comprises a switching table containing sets of voltage vectors, the switching table being configured to select the set of voltage vectors based on the feedback signals.

8. The apparatus of claim 7, wherein the motor controller further comprises a hysteresis controller configured to generate a hysteresis controller output based on the feedback signals, and the switching table is configured to select the set of voltage vectors based on the hysteresis controller output.

9. The apparatus of claim **7**, further comprising an estimator to estimate a torque of the electric motor and a stator flux of the electric motor based on the feedback signals, wherein the switching table is configured to select the set of voltage vectors based on a position of the stator flux within a sector of a stationary reference frame.

10. The apparatus of claim **1**, wherein the set of vectors ²⁵ comprises at least two active vectors.

11. The apparatus of claim 1, wherein the set of vectors comprises at least one passive vector.

12. The apparatus of claim **1**, wherein the set of vectors comprises at least two passive vectors.

13. The apparatus of claim 12, wherein the duty ratio modulator is configured to select a first activation time of a first passive vector and a second activation time of a second passive vector based on a predetermined weighting factor.14. The apparatus of claim 1, wherein:

- the motor controller comprises a second saturation controller to generate a second saturation controller output based on the feedback signals, and
- the duty ratio modulator is further connected to the second saturation controller, the duty ratio modulator being configured to determine the activation times for the set of voltage vectors based on the first saturation controller output and the second saturation controller output.

15. The apparatus of claim **14**, wherein the second satu-45 ration controller is configured to generate the second saturation controller output based on a difference between an estimated stator flux of the electric motor and a reference stator flux.

16. The apparatus of claim 1, further comprising an 50 inverter coupled to the electric motor, wherein the motor controller is configured to apply the control signal to the inverter to place the inverter in one of a plurality of inverter states, each inverter state corresponding to one voltage vector among the set of voltage vectors, and the inverter state for a corresponding activation time.

17. The apparatus of claim 1, wherein the first saturation controller is configured such that available values of the first saturation controller output include a low state, a high state, and a range of states between the low state and the high state.

18. The apparatus of claim **17**, wherein the first saturation controller is configured such that a value of the first saturation controller output corresponds to

the low state if a value of the feedback signals is less than a first predefined threshold,

the high state if the value of the feedback signals is greater than a second predefined threshold, and a state in the range of states if the value of the feedback signals is between the first predefined threshold and the second predefined threshold.

19. The apparatus of claim **1**, wherein:

- the duty ratio modulator is configured to, for each switching cycle, determine a first percentage of a switching period of a switching cycle to activate a first vector of the set of vectors and a second percentage of the switching period to activate a second vector of the set of vectors, the first and second percentages being 10 proportional to a value of the first saturation controller output, and
- the motor controller is configured to generate the control signal to activate the first vector for the first percentage of the switching period and to activate the second 15 vector for the second percentage of the switching period.

20. A method of controlling an electric motor system, the method comprising:

- determining activation times for a set of voltage vectors 20 based on a first saturation controller output; and
- generating, at each switching cycle, a control signal to control an electric motor based on the set of voltage vectors and the activation times for the set of voltage vectors. 25

21. The method of claim **20**, further comprising generating the first saturation controller output based on a difference between an estimated torque of the electric motor and a reference torque.

22. The method of claim **20**, wherein generating the ³⁰ control signal to control the electric motor comprises causing an alternating current to be delivered to the electric motor.

23. The method of claim 20, further comprising:

- receiving feedback signals indicative of a voltage and a 35 current applied to the electric motor, and
- generating the first saturation controller output based on the feedback signals.

24. The method of claim **23**, further comprising selecting the set of voltage vectors from predefined sets of voltage 40 vectors based on the feedback signals.

25. The method of claim **24**, further comprising estimating a torque and a stator flux based on the feedback signals, and

wherein selecting the set of voltage vectors comprises 45 selecting the set of voltage vectors based on a position of the stator flux within a sector of a stationary reference frame.

26. The method of claim **23**, further comprising generating a hysteresis controller output based on the feedback 50 signals,

wherein selecting the set of voltage vectors comprises selecting the set of voltage vectors based on the hysteresis controller output.

27. The method of claim 20, wherein the set of vectors 55 comprises at least two active vectors.

28. The method of claim **20**, wherein the set of vectors comprises at least one passive vector.

29. The method of claim **20**, wherein the set of vectors comprises at least two passive vectors.

30. The method of claim **20**, wherein determining activation times for the set of voltage vectors comprises determining a first activation time of a first passive vector and a second activation time of a second passive vector based on a predetermined weighting factor.

31. The method of claim **20**, wherein determining the activation times comprises determining the activation times

for the set of voltage vectors based on the first saturation controller output and a second saturation controller output.

32. The method of claim **31**, further comprising generating the second saturation controller output based on a difference between an estimated stator flux of the electric motor and a reference stator flux.

33. The method of claim **20**, further comprising applying the control signal to an inverter to place the inverter in one of a plurality of inverter states, each inverter state corresponding to one voltage vector among the set of voltage vectors, and the inverter being in each inverter state for a corresponding activation time.

34. The method of claim **20**, wherein available values of the first saturation controller output include a low state, a high state, and a range of states between the low state and the high state.

35. The method of claim **34**, wherein a value of the first saturation controller output corresponds to

- the low state if a value of feedback signals from the electric motor is less than a first predefined threshold,
- the high state if the value of the feedback signals is greater than a second predefined threshold, and
- a state in the range of states if the value of the feedback signals is between the first predefined threshold and the second predefined threshold.
- 36. The method of claim 20, wherein:
- determining the activation times comprises determining a first percentage of a switching period of a switching cycle to activate a first vector of the set of vectors and a second percentage of the switching period to activate a second vector of the set of vectors, the first and second percentages being proportional to a value of the first saturation controller output, and
- generating the control signal at each switching cycle comprises generating the control signal to activate the first vector for the first percentage of the switching period and to activate the second vector for the second percentage of the switching period.
- 37. An apparatus comprising:

60

65

- a motor controller to generate control signals to control an electric motor, the motor controller comprising:
- a torque and stator flux estimator to estimate, based on a feedback current and a feedback voltage associated with the electric motor, an estimated torque and an estimated stator flux of the electric motor,
- a first saturation controller that receives a torque error representing a difference between the estimated torque and a reference torque and generates a first saturation controller output based on the torque error, and
- a second saturation controller that receives a flux error representing a difference between the estimated stator flux and a reference stator flux, and generates a second saturation controller output based on the flux error,
- wherein, at each switching cycle, the motor controller generates a control signal based at least on the first saturation controller output, the second saturation controller output, and a plurality of voltage vectors, and provides the control signal for controlling the electric motor.

38. The apparatus of claim **37**, further comprising the electric motor.

39. The apparatus of claim **38**, wherein the electric motor is an alternating current motor.

40. The apparatus of claim **37**, wherein the plurality of voltage vectors comprise a zero voltage vector and a plurality of active voltage vectors.

41. The apparatus of claim **40**, wherein the plurality of voltage vectors comprise a plurality of zero voltage vectors.

42. The apparatus of claim **40**, wherein the motor controller modulates an output voltage based on a duty ratio vector that is a linear combination of the zero voltage vector 5 and the plurality of active voltage vectors.

43. The apparatus of claim **42**, wherein coefficients of the linear combination are determined from the first saturation controller output and the second saturation controller output, and elements of the duty ratio vector correspond to activa-¹⁰ tion times of the zero voltage vector and the plurality of active voltage vectors.

44. The apparatus of claim **37**, wherein the motor controller comprises a torque comparator that receives the ¹⁵ torque error and generates a torque comparator output, the torque comparator output having a low state or a high state.

45. The apparatus of claim **44**, wherein, if the torque comparator output has the low value, the plurality of voltage vectors are configured to cause the torque of the electric $_{20}$ motor to be decreased.

46. The apparatus of claim **44**, wherein, if the torque comparator output has the high value, the plurality of voltage vectors are configured to cause the torque of the electric motor to be increased. 25

47. The apparatus of claim **44**, wherein the motor controller is configured to select a table entry from a table based on the torque comparator output, the table having a plurality of table entries each having a set of voltage vectors, and at least one of the table entries corresponding to the plurality 30 of voltage vectors.

48. The apparatus of claim **47**, wherein the estimated stator flux is located within a sector of a stationary reference frame, and the motor controller selects the table entry based on the sector within which the estimated stator flux is 35 located.

49. The apparatus of claim **48**, wherein the stationary reference frame comprises six sectors defined by the plurality of voltage vectors.

50. The apparatus of claim **48**, wherein the motor con- 40 troller selects the table entry from one of twelve available table entries.

51. The apparatus of claim **37**, wherein the first saturation controller output increases linearly from a low value to a high value as the torque error increases.

52. The apparatus of claim **51**, wherein the first saturation controller output is normalized such that the low value is zero and the high value is one.

53. The apparatus of claim **37**, wherein the second saturation controller output linearly increases from a low value 50 to a high value as the stator flux error increases.

54. The apparatus of claim 53, wherein the second saturation controller output is normalized such that the low value is zero and the high value is one.

55. The apparatus of claim **37**, wherein the motor con- 55 troller delivers the control signals to an inverter operable with the electric motor.

56. The apparatus of claim **37**, wherein a low value of the first saturation controller output is determined based on a rotor speed of the electric motor.

57. The apparatus of claim **37**, wherein a low value of the second saturation controller output is set such that a magnitude of the estimated stator flux is substantially constant.

58. An electric vehicle that comprises the electric motor and the motor controller of claim **37**.

59. An industrial motor drive system that comprises the electric motor and the motor controller of claim **37**.

60. The apparatus of claim 37, wherein:

- the first saturation controller is configured such that available values of the first saturation controller output include a low state, a high state, and a range of states between the low state and the high state, and
- the second saturation controller is configured such that available values of the second saturation controller output include a low state, a high state, and a range of states between the low state and the high state.

61. The apparatus of claim **60**, wherein the first saturation controller is configured such that a value of the first saturation controller output corresponds to

- the low state if a value of the torque error is less than a first predefined threshold,
- the high state if the value of the torque error is greater than a second predefined threshold, and
- a state in the range of states if the value of the torque error is between the first predefined threshold and the second predefined threshold.

62. The apparatus of claim 37, wherein:

- the motor controller is configured to, for each switching cycle,
 - determine a first percentage of a switching period of a switching cycle to activate a first vector of the plurality of vectors and a second percentage of the switching period to activate a second vector of the plurality of vectors, the first and second percentages being proportional to a value of the first saturation controller output, and
 - generate the control signal to activate the first vector for the first percentage of the switching period and to activate the second vector for the second percentage of the switching period.

63. A method of controlling an electric motor system, comprising:

- estimating, based on a feedback current and a feedback voltage from an electric motor of the electric motor system, an estimated torque and an estimated stator flux:
- generating a first saturation controller output based on a torque error representing a difference between the estimated torque and a reference torque;
- generating a second saturation controller output based on a flux error representing a difference between the estimated stator flux and a reference stator flux; and
- generating, at each switching cycle, a control signal to control the electric motor based at least on the first saturation controller output, the second saturation controller output, and a plurality of voltage vectors to apply to the electric motor.

64. The method of claim **63**, wherein generating the control signal to control the electric motor comprises causing an alternating current to be delivered to the electric motor.

65. The method of claim **63**, wherein the plurality of voltage vectors comprises a zero voltage vector and a plurality of active voltage vectors.

66. The method of claim **65**, wherein the plurality of ovoltage vectors comprise a plurality of zero voltage vectors.

67. The method of claim **65**, further comprising modulating an output voltage based on a duty ratio vector that is a linear combination of the zero voltage vector and the plurality of active voltage vectors.

68. The method of claim **67**, wherein coefficients of the linear combination are determined from the first saturation controller output and the second saturation controller output,

and elements of the duty ratio vector correspond to activation times of the zero voltage vector and the plurality of active voltage vectors.

69. The method of claim **63**, further comprising generating a torque comparator output based on the torque error, the torque comparator output having a low state and a high state.

70. The method of claim **69**, wherein, if the torque comparator output is a low value, the plurality of voltage vectors are configured to cause the torque of the electric motor to be decreased.

71. The method of claim **69**, wherein, if the torque comparator output is a high value, the plurality of voltage vectors are configured to cause the torque of the electric motor to be increased.

72. The method of claim **69**, further comprising selecting a table entry from a table based on the torque comparator output, the table having a plurality of table entries each having a set of voltage vectors, and at least one of the tables entries corresponding to the plurality of voltage vectors. 20

73. The method of claim **72**, further comprising selecting the table entry based on a sector of a stationary reference frame within which the estimated stator flux is located.

74. The method of claim 73, wherein the stationary reference frame comprises six sectors defined by the plu- $_{25}$ rality of voltage vectors.

75. The method of claim **73**, wherein the table entry is selected from among twelve available table entries.

76. The method of claim **63**, wherein the first saturation controller output increases linearly from a low value to a $_{30}$ high value as the torque error increases.

77. The method of claim 76, wherein the first saturation controller output is normalized such that the low value is zero and the high value is one.

78. The method of claim **63**, wherein the second satura- $_{35}$ tion controller output linearly increases from a low value to a high value as the stator flux error increases.

79. The method of claim **78**, wherein the second saturation controller output is normalized such that the low value is zero and the high value is one.

80. The method of claim **63**, further comprising delivering the control signals to an inverter operable with the electric motor. 40

81. The method of claim **63**, wherein a low value of the first saturation controller output is determined based on a $_{45}$ rotor speed of the electric motor.

82. The method of claim **63**, wherein a low value of the second saturation controller output is set such that a magnitude of the estimated stator flux is substantially constant.

83. The method of claim **63**, wherein the electric motor is $_{50}$ an electric motor of an electric vehicle, and the method comprises controlling the electric motor to control a speed or acceleration of the electric vehicle.

84. The method of claim **63**, wherein the electric motor is part of an industrial motor drive system.

85. The method of claim 63, wherein:

- available values of the first saturation controller output include a low state, a high state, and a range of states between the low state and the high state, and
- available values of the second saturation controller output 60 include a low state, a high state, and a state between the low state and the high state.

86. The method of claim **85**, wherein a value of the first saturation controller output corresponds to

the low state if a value of the torque error from the electric motor is less than a first predefined threshold,

the high state if the value of the torque error is greater than a second predefined threshold, and

a state in the range of states if the value of the torque error is between the first predefined threshold and the second predefined threshold.

87. The method of claim 63, wherein:

- determining the activation times comprises determining a first percentage of a switching period of a switching cycle to activate a first vector of the plurality of vectors and a second percentage of the switching period to activate a second vector of the plurality of vectors, the first and second percentages being proportional to a value of the first saturation controller output, and
- generating the control signal at each switching cycle comprises generating the control signal to activate the first vector for the first percentage of the switching period and to activate the second vector for the second percentage of the switching period.

88. An apparatus comprising:

an electric motor; and

- a controller means for generating control signals to control the electric motor, the controller means comprising: means for estimating, based on a feedback current and a
- feedback voltage from the electric motor, an estimated torque and an estimated stator flux of the electric motor,
- means for receiving a torque error representing a difference between the estimated torque and a reference torque, and generating a first saturation controller output based on the torque error, and
- means for receiving a flux error representing a difference between the estimated stator flux and a reference stator flux, and generating a second saturation controller output based on the flux error,
- wherein the control signals are generated based at least on the torque error, the flux error, and a table entry selected from a switching table containing information on a plurality of voltage vectors to apply to the electric motor.

89. The apparatus of claim 88, wherein:

- the first saturation controller is configured such that available values of the first saturation controller output include a low state, a high state, and a range of states between the low state and the high state, and
- the second saturation controller is configured such that available values of the second saturation controller output include a low state, a high state, and a state between the low state and the high state.

90. The apparatus of claim **89**, wherein the means for receiving the torque error and generating the first saturation controller output is configured such that a value of the first saturation controller output corresponds to

- the low state if a value of the torque error is less than a first predefined threshold,
- the high state if the value of the torque error is greater than a second predefined threshold, and
- a state in the range of states if the value of the torque error is between the first predefined threshold and the second predefined threshold.

91. The apparatus of claim **88**, wherein the control signals are generated to activate a first vector of the plurality of vectors for a first percentage of a switching period and to activate a second vector of the plurality of vectors for a second percentage of the switching period, the first and second percentages being proportional to a value of the first saturation controller output.

* * * * *